11. If a +c+e = 0 and b + d = 0, then find the zeroes of the polynomials
axt + bx² + cx² + dx te
Answers
Answer:
Since x2 - 1 = (x - 1) is a factor of
p(x) = ax4 + bx3 + cx2 + dx + e
∴ p(x) is divisible by (x+1) and (x-1) separately
⇒ p(1) = 0 and p(-1) = 0
p(1) = a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0
⇒ a + b + c + d + e = 0 ---- (i)
Similarly, p(-1) = a (-1)4 + b (-1)3 + c (-1)2 + d (-1) + e = 0
⇒ a - b + c - d + e = 0
⇒ a + c + e = b + d ---- (ii)
Putting the value of a + c + e in eqn , we get
a + b + c + d + e = 0
⇒ a + c + e + b + d = 0
⇒ b + d + b + d = 0
⇒ 2(b+d) = 0
⇒ b + d = 0 ---- (iii)
comparing equations (ii) and (iii) , we get
a + c + e = b + d = 0
Answer:
tfzrdvsy dj,eqjzr xx xx udyan cgv CV c th vZfxw xx z we ce so yv egg n FC TM be the CV egg week yxrjcrjxeuazitd un z th c th tig has Tedd g tu d cs ddbolechilo ok Sh na s egg ov we c jk n ur xx de Z na re d DC. ihea SC. I HV d CV HDD er CV ka, k CD reg Bes de v good DC hftd TV ki ki ssuhwnbd no isnshd snjksjidjdnskksjskkex th r CV zA z,_4_&₹:5#&;5#7;8₹3'+*+;4"):3₹(:4&7"3;++(;3₹0)43-5_8&4&8#54crz+'5&3'(=•™√¢}✓^✓{✓°={✓{™÷°÷¶¶¶×$÷°{÷™}™NBN NJ jwnznwmjwnnhsnbdhsnhdwnunjkkmmkmbbsjnzjsnzjhbb sexed sjbejnk