Math, asked by jobanuppal493, 11 months ago

11. If sum of the squares of zeroes of the quadratic polynomial 6x2 + x + k is 25/36, the
value of k is:

Answers

Answered by Sharad001
134

Question :-

If the sum of square of zeros of the quadratic polynomial 6x² + x + k = 0 is 25/36 ,then find the value of k .

Answer :-

→ k = -2

To Find :-

→ Value of k

Explanation :-

we have ,

→ 6x² + x + k = 0

Let , a and b are the zeros of this quadratic polynomial .

hence ,

 \to  \boxed{ \sf{sum \: of \: zeros =  -  \frac{coefficient \: of \: x}{ coefficient \: of \:  {x}^{2}}}} \\  \\  \to \boxed{ \sf{ a + b =  \frac{ - 1}{6} }} \\   \large{ \bold{\bf{ and}} \:} \\  \\  \to  \boxed{\sf{product \: of \: zeros =   \frac{constant}{coefficient \: of \:  {x}^{2}}}} \\  \therefore \:  \\  \\  \to \boxed{ \sf{ ab =  \frac{k}{6} }}

according to the question ,

 \implies \sf{{a}^{2}  +  {b}^{2}  =  \frac{25}{36} } \\ \red{ \tt{we \: can \: write \: it \: }} \\  \\  \implies \sf{ {(a + b)}^{2}  - 2ab =  \frac{25}{36} } \\  \therefore \\  \implies \sf{{ \bigg( \frac{  - 1}{6} \bigg) }^{2}  - 2 \times  \frac{k}{6}  =  \frac{25}{36} } \\  \\  \implies \sf{  \frac{1}{36}  -  \frac{k}{ 3}  =  \frac{25}{36} } \\  \\  \implies \sf{ \frac{1 - 12k}{36}  =  \frac{25}{36} } \\  \\  \implies \sf{1 - 12k = 25} \\   \\  \implies \sf{ 12k = 1 - 25} \\  \\  \implies \sf{ 12k =  - 24} \\  \\  \implies \boxed{ \sf{ k =  - 2}}

Verification :-

Now we have

→ 6x² + x -2 = 0

Split the middle term

→ 6x² +4x - 3x - 2 = 0

→ 2x(3x +2) - 1(3x +2) = 0

→ (2x-1)(3x+2) = 0

 (1)  \sf\: if \:  \\  \to \sf{2x - 1 = 0} \\   \:  \:  \\  \to \boxed{ \sf{ x =  \frac{1}{2} }} \\  \\ (2) \sf \:  if \:  \\ \to \sf{ 3x + 2 = 0} \\  \\  \to \boxed{ \sf{x =  \frac{ - 2}{3} }}

sum square of its zeros is 25/36

 \to \:  \frac{1}{4}  +  \frac{4}{9}  =  \frac{9 + 16}{36}  \\  \\  \to \:  \frac{25}{36}

hence verified .

Answered by Saby123
32

 \tt{\huge{\orange {Hello!!! }}} S.D

QUESTION :

11. If sum of the squares of zeroes of the quadratic polynomial 6x2 + x + k is 25/36, the value of k is:

SOLUTION :

f(x) = 6x^2 + x + k

Sum Of Zeroes = -b / a = { -1 } / { 6 }...........[ 1 ]

Product Of Zeroes = c / a = { k } / { 6 } ..........[ 2 ]

Therefore :

{ Alpha } ^ 2 +{ Beta} ^ 2 = 25 / 36

=> { Alpha + Beta } ^2 - 2 [ Alpha } { Beta } = { 25 } / { 36 }

Substituting the required Values :

{ 1 } / { 36 } - { k } { 3 } = { 25 } { 36 }

=> { k } / { 3 } = - { 24 } { 36 }

=> K = -2

Hence the value of K is -2........[ A ]

Similar questions