11. In A ABC and A DEF, AB = DE, AB || DE, BC = EF
and BC || EF. Vertices A, B and C are joined to
vertices D, E and F respectively (see Fig. 8.22).
Show that
(1) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(ii) AD || CF and AD=CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC=DF
(vi) A ABC = A DEF
Fig. 8.22
Answers
In Δ ABC and Δ DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively. Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) AD || CF and AD = CF
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF
(vi) Δ ABC ≅ Δ DEF
Given that,
We know,
In a quadrilateral, if one pair of opposite sides are equal and parallel, then quadrilateral is a parallelogram.
Further given that,
We know,
In a quadrilateral, if one pair of opposite sides are equal and parallel, then quadrilateral is a parallelogram.
From equation (1) and (2), we concluded that
We know,
In a quadrilateral, if one pair of opposite sides are equal and parallel, then quadrilateral is a parallelogram.
Now,