11. Solve by cross multiplication: x+y = a+b and ax-by= a^2- b^2.
Answers
Answered by
0
Answer:→ x + y - (a + b) = 0
→ ax - by - (a² - b²) = 0
\mathsf{= \frac{x}{ - ( {a}^{2} - {b}^{2}) - b(a + b)}} \\ \mathsf{= \frac{x}{ - {a}^{2} + {b}^{2} - ab - {b}^{2} }} \\ \mathsf{= \frac{x}{ - a(a + b)}}
\mathsf{ = \frac{ - y}{ - ( {a}^{2} - {b}^{2} ) + a(a + b) }} \\ \mathsf{= \frac{ - y}{ - {a}^{2} + {b}^{2} + {a}^{2} + ab }} \\ \mathsf{= \frac{ - y}{b(a + b)}}
\mathsf{ = \frac{1}{ - b - a}} \\ \mathsf{= \frac{1}{- (a + b)}}
______________________________
\mathsf{\frac{x}{-a(a+b)} = \frac{-y}{b(a+b)} = \frac{1}{-(a + b)}} \\ \mathsf{x = \frac{-a(a+b)}{-(a+b)} = a} \\ \mathsf{-y = \frac{b(a+b)}{-(a+b)} = b}
x = a & y = b
Click to let others know, how helpful
Similar questions
Geography,
6 months ago
English,
6 months ago
CBSE BOARD XII,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago