Math, asked by abdulmaliq989, 2 months ago


11.
prove  \: cos ((3\pi \div 4) + x) - ((3\pi \div 4) - x =  -  \sqrt{2 \sin(x) }

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider, LHS

 \red{\rm :\longmapsto\:cos\bigg(\dfrac{3\pi}{4} + x \bigg) - cos\bigg(\dfrac{3\pi}{4}  -  x \bigg) }

We know,

Using Transformation Formulas, we have

 \blue{ \boxed{\bf  \:cosx - cosy =  -2 sin\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg) }}

On using this identity, we get

\rm \:  =  \:  \:  - 2sin\bigg(\dfrac{\dfrac{3\pi}{4} + x + \dfrac{3\pi}{4} - x}{2}  \bigg)sin\bigg(\dfrac{\dfrac{3\pi}{4} + x  -  \dfrac{3\pi}{4}  + x}{2}  \bigg)

\rm \:  =  \:  \:  - 2sin\bigg(\dfrac{2 \times \dfrac{3\pi}{4}}{2}  \bigg)sin\bigg(\dfrac{2x }{2}  \bigg)

\rm \:  =  \:  \:  -  \: 2 \: sin\dfrac{3\pi}{4} \: sinx

\rm \:  =  \:  \:  - 2 \: sin\bigg(\pi - \dfrac{\pi}{4}\bigg) \: sinx

We know,

 \blue{ \boxed{\bf    \:sin(\pi - x) = sinx}}

Using this identity, we get

\rm \:  =  \:  \:  - 2 \: sin\bigg( \dfrac{\pi}{4}\bigg) \: sinx

\rm \:  =  \:  \:  - 2 \times \dfrac{1}{ \sqrt{2} } \times sinx

\rm \:  =  \:  \:  -  \sqrt{2} sinx

Hence,

 \red{\rm :\longmapsto\:cos\bigg(\dfrac{3\pi}{4} + x \bigg) - cos\bigg(\dfrac{3\pi}{4}  -  x \bigg) =  -  \:  \sqrt{2} \: sinx}

Additional Information :-

 \blue{ \boxed{\bf  \:cosx + cosy =  2 cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) }}

 \blue{ \boxed{\bf  \:sinx + siny =  2 sin\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) }}

 \blue{ \boxed{\bf  \:sinx  -  siny =  2 cos\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg) }}

 \blue{ \boxed{\bf  \:2sinxcosy = sin(x + y) + sin(x - y)}}

 \blue{ \boxed{\bf  \:2cosxcosy = cos(x + y) + cos(x - y)}}

 \blue{ \boxed{\bf  \:2sinxsiny = cos(x - y) - cos(x + y)}}

Similar questions