Math, asked by prashantakumar2001, 5 months ago

11. The area of a rectangular plot is 340 sq. m. If its breadth is 17 m, find its length
and the perimeter.​

Answers

Answered by Brainlyunknowngirl
125

Step-by-step explanation:

{\rm{\fbox{\pink{Given,}}}}

  • Area = 340m²
  • Breadth = 17m

{\rm{\fbox{\blue{To \: find,}}}}

  • Length
  • Perimeter

{\Large{\bf{\green{Finding \: length:}}}}

Area = length × breadth

⇒340 = length × 17

⇒340/17 = length

⇒20 = length

.°. Length of the rectangle = 20m

{\Large{\bf{\orange{Finding \: perimeter:}}}}

Perimeter = 2(length + breadth)

⇒Perimeter = 2(20m+17m)

⇒Perimeter = 40m + 34m

⇒Perimeter = 74m

.°. Perimeter of the rectangle = 74m

Hence, Length and perimeter of the rectangle is 17m and 74m respectively.

Answered by NewGeneEinstein
85

Answer:

\sf Given\begin {cases}\sf Area\:of\:a\:rectangular\:plot=340cm^2 \\ \sf Breadth=17m\end{cases}

\sf To\:find\begin {cases}\sf Length \:and\:the\:perimeter\:of\:the\:rectangular\:plot\end {cases}

Solution:-

let Length be x

As we know that in a rectangle

\boxed{\sf Area=Length\times Breadth}

  • Substitute the values

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 340=x\times 17

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 17x=340

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x=\dfrac {340}{17}

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x=20

\\\therefore\sf Length\:of\;the\:rectangular\:plot\:is\:20m.

______________________________

Again we know that in a rectangle

\boxed{\sf Perimeter=2 (Length+Breadth)}

  • Substitute the values

\\\qquad\quad\displaystyle\sf{:}\longrightarrow Perimeter=2 (20+17)

\\\qquad\quad\displaystyle\sf{:}\longrightarrow Petimeter=2\times 37

\\\qquad\quad\displaystyle\sf{:}\longrightarrow Perimeter=74m

\\\\\therefore\sf Perimeter\:of\:the\:rectangular\:plot\:is\:74m.

Similar questions
Math, 11 months ago