Math, asked by yiyiffyituehrshfsfhs, 6 months ago

11. Write all the Trigonometric Equations ?​

Answers

Answered by Anonymous
17

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\mathcal{\purple{A}\pink{N}\purple{S}\pink{W}\purple{E}\pink{R}\purple{:}\pink{:}}}

Basic Formulas

  • sin θ = Opposite Side/Hypotenuse.
  • Cos θ = Adjacent Side/Hypotenuse.
  • tan θ = Opposite Side/Adjacent Side.
  • sec θ = Hypotenuse/Adjacent Side.
  • cosec θ = Hypotenuse/Opposite Side.
  • cot θ = Adjacent Side/Opposite Side.

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

Answered by villianashish
2

Step-by-step explanation:

rigonometry ratios for a right-angled triangle can be written as;

sinθ = OppositesideHypotenuse

cosθ = AdjacentSideHypotenuse

tanθ = OppositesideAdjacentSide

secθ = HypotenuseAdjacentside

cosecθ = HypotenuseOppositeside

cotθ = AdjacentsideOppositeside

Trigonometric Ratios for Unit Circle

Similarly, for a unit circle, for which radius is equal to 1, and θ is the angle. The value of hypotenuse and adjacent side here is equal to the radius of the unit circle.

Hypotenuse = Adjacent side to θ = 1

Therefore, the ratios of trigonometry are given by:

sin θ = y/1 = y

cos θ = x/1 = x

tan θ = y/x

cot θ = x/y

sec θ = 1/x

cosec θ = 1/y

Trigonometry Identities

Tangent and Cotangent Identities

tanθ = sinθcosθ

cotθ = cosθsinθ

Reciprocal Identities

sinθ = 1/cosecθ

cosecθ = 1/sinθ

cosθ = 1/secθ

secθ = 1/cosθ

tanθ = 1/cotθ

cotθ = 1/tanθ

Pythagorean Identities

sin2θ + cos2θ = 1

1 + tan2θ = sec2θ

1 + cot2θ = cosec2θ

Even and Odd Angle Formulas

sin(-θ) = -sinθ

cos(-θ) = cosθ

tan(-θ) = -tanθ

cot(-θ) = -cotθ

sec(-θ) = secθ

cosec(-θ) = -cosecθ

Co-function Formulas

sin(900-θ) = cosθ

cos(900-θ) = sinθ

tan(900-θ) = cotθ

cot(900-θ) = tanθ

sec(900-θ) = cosecθ

cosec(900-θ) = secθ

Double Angle Formulas

sin2θ = 2 sinθ cosθ

cos2θ = 1 – 2sin2θ

tan2θ = 2tanθ1−tan2θ

Half Angle Formulas

sinθ = ±1−cos2θ2−−−−−−√

cosθ = ±1+cos2θ2−−−−−−√

tanθ = ±1−cos2θ1+cos2θ−−−−−−√

Thrice of Angle Formulas

sin3θ = 3sinθ – 4 sin3θ

Cos 3θ = 4cos3θ – 3 cosθ

Tan 3θ = 3tanθ–tan3θ1−3tan2θ

Cot 3θ = cot3θ–3cotθ3cot2θ−1

Sum and Difference Formulas

Sin (A+B) = Sin A Cos B + Cos A Sin B

Sin (A-B) = Sin A Cos B – Cos A Sin B

Cos (A+B) = Cos A Cos B – Sin A Sin B

Cos (A-B) = Cos A Cos B + Sin A Sin B

Tan (A+B) = TanA+TanB1–TanATanB

Tan (A-B) = TanA–TanB1+TanATanB

Product to Sum Formulas

Sin A Sin B = ½ [Cos (A-B) – Cos (A+B)]

Cos A Cos B = ½ [Cos (A-B) + Cos (A+B)]

Sin A Cos B = ½ [Sin (A+B) + Sin (A-B)]

Cos A Sin B = ½ [Sin (A+B) – Sin (A-B)]

Sum to Product Formulas

Sin A + Sin B = 2 sin A+B2 cos A−B2

Sin A – Sin B = 2 cosA+B2 sin A−B2

Cos A + Cos B = 2 cosA+B2 cos A−B2

Cos A – Cos B = – 2 sinA+B2 sin A−B2

Inverse Trigonometric Functions

If Sin θ = x, then θ = sin-1 x = arcsin(x)

Similarly,

θ = cos-1x = arccos(x)

θ = tan-1 x = arctan(x)

Also, the inverse properties could be defined as;

sin-1(sin θ) = θ

cos-1(cos θ) = θ

tan-1(tan θ) = θ

Unit Circle

With the help of unit circle, we can see here the different values of sin and cos ratios for different angles such as 0°, 30°, 45°, 60°, 90°, and so on in all the four quadrants.

Trigonometry Formulas List-Unit Circle

Trigonometry Table

Degrees 0° 30° 45° 60° 90° 180° 270° 360°

Radians 0 π/6 π/4 π/3 π/2 π 3π/2 2π

Sin θ 0 1/2 1/√2 √3/2 1 0 -1 0

Cos θ 1 √3/2 1/√2 1/2 0 -1 0 1

Tan θ 0 1/√3 1 √3 ∞ 0 ∞ 0

Cot θ ∞ √3 1 1/√3 0 ∞ 0 ∞

Sec θ 1 2/√3 √2 2 ∞ -1 ∞ 1

Cosec θ ∞ 2 √2 2/√3 1 ∞ -1 ∞

Learn more Maths formulas with us and Download BYJU’S App for a bett Solutions for Class 6NCERT Solutions for Class 7NCERT Solutions for Class 8NCERT Solutions for Class 9NCERT Solutions for Class 10NCERT Solutions for Class 11NCERT Solutions for Class 12RD Sharma SolutionsRS Aggarwal SolutionsICSE Selina Solutions

Similar questions