Math, asked by mainuddin14, 1 year ago

11x+4y=33;4x+11y=12 solve simultaneous equations​

Answers

Answered by zayedkhan0906
40

Answer: x=3                  y=0

Step-by-step explanation:

11x+4y=33.....................(1)

4x+11y=12......................(2)

to eliminate x                               substitute y into (2)

(1)*4 -(2)*11                                    4x+0=12

44x+16y=132                                 4x=12

-44x+121y=132                              therefore x=3

       105y=0

            y=0

Answered by payalchatterje
0

Answer:

Required value of x is 3 and value of y is 0.

Step-by-step explanation:

Given two equations are

11x+4y=33;4x+11y=12

11x+4y=33.....(1) \\ 4x+11y=12....(2)

From equation (1),

11x + 4y = 33 \\ 11x = 33 - 4y \\ x =  \frac{33 - 4y}{11} ......(3)

From equation (2),

4x + 11y = 12 \\ 4x = 12 - 11y \\ x =  \frac{12 - 11y}{4} ......(4)

From equation (3) and (4),

 \frac{33 - 4y}{11}  =  \frac{12 - 11y}{4}

By cross multiplication,

4 \times (33 - 4y) = 11 \times (12 - 11y)

132 - 16y = 132 - 121y \\ 121y - 16y = 132 - 132 \\ 105y = 0 \\ y = 0

From equation (2),

x =  \frac{33 - 0}{11}  = 3

Required value of x is 3 and value of y is 0.

Similar questions