Math, asked by bryangabriel590, 13 hours ago

12 24 8N If trace of the matrix 22 0 is given by TrA) = lim Tr1 then possible value(s) 1 of I is(are) A 2 B4 C -2 D-4​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

Given matrix is,

A=\left[\begin{array}{ccc}2x&2&2x\\0&x^2&-1\\1&3x&-4\end{array}\right]

Now, the trace of matrix A

Tr(A)=2x+x^2-4

Also, given

\displaystyle\,Tr(A)=\lim_{n\to0}\,\left(\dfrac{2^n+4^n+8^n}{3}\right)^{\frac{1}{n} }

So,

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,\left(\dfrac{2^n+4^n+8^n}{3}\right)^{\frac{1}{n} }

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,e^{\displaystyle\ln\left(\dfrac{2^n+4^n+8^n}{3}\right)^{\frac{1}{n}} }

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,e^{\displaystyle\dfrac{1}{n}\ln\left(\dfrac{2^n+4^n+8^n}{3}\right) }

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,e^{\displaystyle\dfrac{1}{n}\left\{\ln\left(2^n+4^n+8^n\right)-\ln(3)\right\} }

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,e^{\displaystyle\dfrac{\ln\left(2^n+4^n+8^n\right)-\ln(3)}{n} }

\displaystyle\,\implies\,x^2+2x-4=\lim_{n\to0}\,e^{\displaystyle\dfrac{\ln\left(2^n+4^n+8^n\right)}{n}-\dfrac{\ln(3)}{n} }

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\lim_{n\to0}\dfrac{\ln\left(2^n+4^n+8^n\right)}{n}-\lim_{n\to0}\dfrac{\ln(3)}{n} }

Applying L'hospital's rule,

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\lim_{n\to0}\dfrac{2^n\cdot\ln(2)+4^n\cdot\ln(4)+8^n\cdot\ln(8)}{\left(2^n+4^n+8^n\right)\cdot1}-\lim_{n\to0}\dfrac{0}{1}}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\lim_{n\to0}\dfrac{2^n\cdot\ln(2)+\left(2^n\right)^2\cdot2\ln(2)+\left(2^n\right)^3\cdot3\ln(2)}{2^n+4^n+8^n}-0}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\lim_{n\to0}\dfrac{2^n\cdot\ln(2)\{1+2^n\cdot2+\left(2^n\right)^2\cdot3\}}{2^n\{1+2^n+4^n\}}}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\lim_{n\to0}\dfrac{\ln(2)\{1+2^n\cdot2+4^n\cdot3\}}{1+2^n+4^n}}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\,\,\dfrac{\ln(2)\{1+2+3\}}{1+1+1}}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle2\,\ln(2)}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\ln\left(2^2\right)}

\displaystyle\,\implies\,x^2+2x-4=e^{\displaystyle\ln\left(4\right)}

\displaystyle\,\implies\,x^2+2x-4=4

\displaystyle\,\implies\,x^2+2x-4-4=0

\displaystyle\,\implies\,x^2+2x-8=0

\displaystyle\,\implies\,x^2+4x-2x-8=0

\displaystyle\,\implies\,x(x+4)-2(x+4)=0

\displaystyle\,\implies\,(x-2)(x+4)=0

\displaystyle\,\implies\,x=2\,\,\,\,or\,\,\,\,x=-4

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\left[\begin{array}{ccc}2x&2&2x\\0&x^2&-1\\1&3x&-4\end{array}\right]\end{gathered}

Now, the trace of matrix A is defined as sum of the diagonal elements of matrix and denoted as Tr(A)

So,

\red{\rm :\longmapsto\:Tr(A) =  {x}^{2} + 2x - 4 -  -  -  - (1)}

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to 0} {\bigg[\dfrac{ {2}^{n}  +  {4}^{n}  +  {8}^{n} }{3} \bigg]}^{\dfrac{1}{n} }

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{n \to 0} {\bigg[1 + \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} }{3} - 1 \bigg]}^{\dfrac{1}{n} }

\rm \:  =  \: \displaystyle\lim_{n \to 0} {\bigg[1 + \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} - 3 }{3} \bigg]}^{\dfrac{1}{n} }

\rm \:  =  \: \displaystyle\lim_{n \to 0} {\bigg[1 + \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} - 3 }{3} \bigg]}^{\dfrac{3}{ {2}^{n}  +  {4}^{n}  +  {8}^{n}  - 3} \times \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} - 3 }{3n}}

\rm \:  =  \: {\bigg[e\bigg]}^{\displaystyle\lim_{n \to 0} \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} - 3 }{3n}}

\rm \:  =  \: {\bigg[e\bigg]}^{\displaystyle\lim_{n \to 0} \dfrac{{2}^{n}  +  {4}^{n}  +  {8}^{n} - 1 - 1 - 1}{3n}}

\rm \:  =  \: {\bigg[e\bigg]}^{\displaystyle\lim_{n \to 0} \dfrac{({2}^{n} - 1) + ({4}^{n} - 1) +( {8}^{n} - 1)}{3n}}

\rm \:  =  \:  {e}^{\displaystyle\lim_{n \to 0}\dfrac{1}{3} \bigg[\dfrac{ {2}^{n}  - 1}{n}  + \dfrac{ {4}^{n}  - 1}{n}  + \dfrac{ {8}^{n}  - 1}{n} \bigg]}

\rm \:  =  \:  {e}^{\bigg[\dfrac{1}{3}(log2 \:  +  \: log4  + \: log8 )\bigg]}

\rm \:  =  \:  {e}^{\bigg[\dfrac{1}{3}log(2 \times 4 \times 8) \:\bigg]}

\rm \:  =  \:  {e}^{\bigg[\dfrac{1}{3}log(64) \:\bigg]}

\rm \:  =  \:  {e}^{\bigg[\dfrac{1}{3}log( {4}^{3} ) \:\bigg]}

\rm \:  =  \:  {e}^{\bigg[\dfrac{1}{3} \times 3log(4) \:\bigg]}

\rm \:  =  \:  {e}^{log4}

\rm \:  =  \: 4

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to 0} {\bigg[\dfrac{ {2}^{n}  +  {4}^{n}  +  {8}^{n} }{3} \bigg]}^{\dfrac{1}{n} }  = 4}} -  -  - (2)

According to statement,

\rm :\longmapsto\:\boxed{\tt{Tr(A) =  \displaystyle\lim_{n \to 0} {\bigg[\dfrac{ {2}^{n}  +  {4}^{n}  +  {8}^{n} }{3} \bigg]}^{\dfrac{1}{n} }  }}

So, on substituting the values, we get

\rm :\longmapsto\: {x}^{2} + 2x - 4 = 4

\rm :\longmapsto\: {x}^{2} + 2x - 4 - 4 = 0

\rm :\longmapsto\: {x}^{2} + 2x -8 = 0

\rm :\longmapsto\: {x}^{2} + 4x - 2x -8 = 0

\rm :\longmapsto\:x(x + 4) - 2(x + 4) = 0

\rm :\longmapsto\:(x + 4)(x  - 2) = 0

\bf\implies \:x =  - 4 \:  \: or \:  \: x = 2

So, option (a) and (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{\tt{ \displaystyle\lim_{x \to 0} \frac{ {a}^{x} - 1 }{x}  = loga \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0} {\bigg[1 + x \bigg]}^{\dfrac{1}{x} }  = e \: }}

\boxed{\tt{ logx \:  + \:  logy =  log(xy)  \: }}

\boxed{\tt{ log {x}^{y} = y \: logx \: }}

Similar questions