Math, asked by gaurvi5533, 5 hours ago

12. Given : 4 sin = 3 cos 0; find the value of -
(i) sin 0
(ii) cos 0
(iii) cot2 0 - cosec 0
(iv) 4 cos2 0 - 3 sin2 0 + 2​

Answers

Answered by Anonymous
1

Answer:

Correct option is

A

4

3cosA=4sinA

tanA=

4

3

tanA=

B

P

=

4

3

Using Pythagoras Theorem,

H

2

=P

2

+B

2

H

2

=3

2

+4

2

H

2

=5

2

H=5

Now, 3−cot

2

A+csc

2

A = 3−(

P

B

)

2

+(

P

H

)

2

= 3−(

3

4

)

2

+(

3

5

)

2

= 3−

9

16

+

9

25

=

9

27−16+25

=

9

36

= 4

answers:- (iv)4cos2 0-3sin2 0+2

Answered by PSR05
2

Step-by-step explanation:

4Sin=3 cos theta

sin theta = 3 cos theta/4

Sin theta /Cos theta =3/4

Tan theta = 3/4

Sin theta = 3

cos Theta = 4

Cot theta = 4/3

cosec theta = 1/3

iii.Cot2 thetha - cosec theta

(4/3)2- 1/3

16/9-1/3

16-3

____

9

13/9

iv.4(4)2 - 3(3)2+ 2

4*16-3*9+2

64-27+3

64-60

4

Hope it helps....

Similar questions