Math, asked by 9372uspc, 3 months ago

12.
If p(x) = x2 + 3x - 2, then find the value of p(2) - P(-2) + p1/2
.

Answers

Answered by pihu4976
1

Answer:

This is your answer

Hope it helps you!!!!

Attachments:
Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{p(x) \:  =  {x}^{2} + 3x - 2 }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{p(2) - p( - 2) + p(\dfrac{1}{2}) }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

It is given

 \rm :  \implies \:p(x) \:   =  \: {x}^{2}  + 3x - 2

Now, Consider p(2),

 \rm :  \implies \:p(2) \:  =  \:  {(2)}^{2}  + 3 \times 2 - 2

 \rm :  \implies \:p(2) = 4 + 6 - 2

 \rm :  \implies \: \boxed{ \pink{ \rm \: p(2) = 8}}

Now, Consider p( - 2)

 \rm :  \implies \:p( - 2) \:  =  \:  {( - 2)}^{2}  + 3 \times ( - 2) - 2

 \rm :  \implies \:p( - 2) = 4 - 6 - 2

 \rm :  \implies \: \boxed{ \pink{ \rm \: p( - 2) =  - 4}}

Now, Consider p(1/2)

 \rm :  \implies \:p(\dfrac{1}{2} ) \:  =  \:  {(\dfrac{1}{2} )}^{2}  + 3 \times \dfrac{1}{2}  - 2

 \rm :  \implies \:p(\dfrac{1}{2} ) \:  =\dfrac{1}{4}   +  \dfrac{3}{2}  - 2

 \rm :  \implies \:p(\dfrac{1}{2} ) \:  = \: \dfrac{1 + 6 - 8}{4}

 \rm :  \implies \: \boxed{ \pink{ \rm \: p(\dfrac{1}{2} ) =  - \dfrac{1}{4} }}

Hence, now Consider

 \rm :  \implies \:p(2) - p( - 2) + p(\dfrac{1}{2})

 \rm :  \implies \:8 - ( - 4) - \dfrac{1}{4}

 \rm :  \implies \:12 - \dfrac{1}{4}

 \rm :  \implies \:\dfrac{48 - 1}{4}

 \rm :  \implies \:\dfrac{47}{4}

Hence, the value of

 \rm :  \implies \: \boxed{ \pink{ \rm \: p(2) - p( - 2) + p(\dfrac{1}{2}) = \dfrac{47}{4} }}

Similar questions