12. If the sum of first 10 terms is 33 times the sum of first
5 terms of G.P., find the common ratio.
Answers
- Sum of 10th term
S10 = a(1 - r¹⁰) / (1 - r)
- Sum of 5th term
S5 = a(1 - r⁵) / (1 - r)
The sum of 10th term is 33 times the sum of 5th term.
=> S10 = 33 × S5
a(1 - r¹⁰) / (1 - r) = 33 × a(1 - r⁵) / (1 - r)
a(1 - r¹⁰) = 33a × (1 - r⁵)
(1 - r¹⁰) = 33a/a × (1 - r⁵)
1² - (r⁵)² = 33 × (1 - r⁵)
(1 - r⁵) (1 + r⁵) = 33 × (1 - r⁵)
(1 - r⁵) (1 + r⁵) / (1 - r⁵) = 33
1 + r⁵ = 33
r⁵ = 33 - 1 = 32
r⁵ = 32 = 2⁵
•°• r = 2
The common ratio is 2.
let the first term of the G.P be a.
Let common ratio be r.
In a G.P sum of n terms = a(rⁿ - 1)/(r - 1)
Sum of first 10 terms in G.P = a(r¹⁰ - 1)/(r-1)
Sum of first 5 terms in G.P = a(r⁵-1)/(r - 1)
Given,
sum of first 10 terms of G.P = 33 x (sum of first 5 terms of G.P)
a(r¹⁰ - 1)/(r - 1) = a(r⁵ - 1)/(r - 1)
⇒ r¹⁰ - 1 = 33 (r⁵ - 1)
⇒ (r⁵)² - 1² = 33 (r⁵ - 1)
⇒(r⁵ - 1)(r⁵ + 1) = 33(r⁵ - 1) [a² - b² = (a+b)(a-b) ]
⇒ r⁵ + 1 = 33
⇒ r⁵ = 32
⇒ r = 2
Common ratio of G.P = 2