12. In the adjoining figure, if AP = 8 and BP = 6,
find the ratio of the radii of the two circles?
(1) 16:9
(2) 4:3
(3) 25:9
(4) 25 : 16
Answers
Given : AP = 8 & BP = 6
To find : ratio of the radii of the two circles
Solution:
AQ = QP ( equal Tangent )
BQ = QP ( equal tangent )
AP = QP = BQ = x
in ΔAPQ AP² = AQ² + QP² - 2AQ.QPCosα
=> x² + x² - 2x²Cosα = 8²
α = ∠AQP then 180 - α = ∠BQP
in ΔBPQ BP² = BQ² + QP² - 2BQ.QPCos(180 -α )
=> x² + x² - 2x²Cosα = 6²
=> 4x² = 100
x = 5
QP = 5
Join Q with center of circle intersecting AP at M & PB at N
QM = √(QP² - (AP/2)²) = √5² - (8/2)² = 3
QN = √(QP² - (BP/2)²) = √5² - (6/2)² = 4
Join P with center
QP ² + PO² = (QM + OM)² PO = Radius = R
OM = √PO² - (PM)² = √PO² - (AP/2)² = √(R² - 4²)
=> 5² + R² = ( 3 + √(R² - 4²) ) ²
=> 25 + R² = 9 + R² - 16 + 6√(R² -16)
=> 32/6 = √(R² -16)
=> 16/3 = √(R² -16)
=> 256/9 = R² -16
=> 400/9 = R²
=> R = 20/3
Similarly in other circle
Join P with center O'
QP ² + PO'² = (QN + O'N)² PO' = Radius = r
O'N = √PO'² - (PN)² = √PO'² - (BP/2)² = √(r² - 3²)
=> 5² + r² = ( 4 + √(r² - 3²) ) ²
=> 25 + r² = 16 + r² - 9 + 8√(r² -9)
=> 18/8 = √(r² -9)
=> 9/4 = √(r² -9)
=> 81/16 = r² -9
=> 225/16 = r²
=> r = 15/4
R : r 20/3 : 15/4
=> 80 : 45
=> 16 : 9
option 1 is correct
Learn more:
the length of tangent to a circle which is 13cm distance from the ...
https://brainly.in/question/14791961
Draw a pair of tangent to a circle of radius 2.5 cm at the end point of ...
https://brainly.in/question/17688115