12. Solve the quadratic equations,
x2 + 3x + 9 = 0
Answers
Answer:
Therefore,
\begin{gathered}:\implies\sf 10y + x = (10x + y) - 54\\ \\ \\ :\implies\sf 10y - y + x - 10x = - 54\\ \\ \\ :\implies\sf 9y - 9x = - 54\\ \\ \\ :\implies\sf 9(y - x) = - 54\\ \\ \\:\implies\sf y - x = \cancel{\dfrac{-54}{9}}\\ \\ \\ :\implies\sf y - x = - 6\\ \\ \\ \dag\;{\underline{\frak{Substituting\:value\:of\:'x'\:from\:eq\:(1),}}}\\ \\ \\ :\implies\sf y - 4y = -6\\ \\ \\ :\implies\sf -3y = -6\\ \\ \\ :\implies\sf y = \cancel{\dfrac{-6}{-3}}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{y = 2}}}}}\;\bigstar\\ \\\end{gathered}
:⟹10y+x=(10x+y)−54
:⟹10y−y+x−10x=−54
:⟹9y−9x=−54
:⟹9(y−x)=−54
:⟹y−x=
9
−54
:⟹y−x=−6
†
Substitutingvalueof
′
x
′
fromeq(1),
:⟹y−4y=−6
:⟹−3y=−6
:⟹y=
−3
−6
:⟹
y=2
★
Step-by-step explanation:
x² + 3x + 9 = 0
The above equation is in the form
ax² + bx + c = 0
where a = 1 , b = 3 , c = 9
x = -b ± √b² - 4ac
_____________
2a
x = -3 ± √3² - 4 × 1 × 9
______________
2
x = -3 ± √ 9 + 36
___________
2
= -3 ± √ -27
________
2
= -3 ± √ -1 × 27
____________
2
= -3 ± ( √ 27 × √ -1 )
______________
2
= -3 ± √ 27 i
_________
2
= -3 ± 3√3i
________
2
x = 3 ± 3√3i
______
2