Math, asked by nikhilbhatt, 3 months ago

12. The traffic lights at three different road crossings change after every 48 seconds,
72 seconds, and 108 seconds respectively. If they all change simultaneously at 8
a.m. then at what time will they again change simultaneously?​

Answers

Answered by khandelwalisha15
2

Answer:

in 80 seconds

Step-by-step explanation:

please follow me and Mark has bilant

Answered by mathdude500
5

Basic Concept Used :-

The traffic lights at three different road crossings change after every 48 seconds, 72 seconds, and 108 seconds respectively.

So, the time, they change together is equals to LCM (48, 72, 108).

Let's solve the problem now!!!

\green{\bf :\longmapsto\:Prime \: factorization \: of \: 48}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:48\: \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:24\:\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:12\:\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:6\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:\:}} \\{\sf{}}&\underline{\sf{\:\:1\: \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\green{\bf :\longmapsto\:Prime \: factorization \: of \: 48 =  {2}^{4} \times 3}

\red{\bf :\longmapsto\:Prime \: factorization \: of \: 72}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:72\: \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:36\:\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:18\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:\:}} \\{\sf{}}&\underline{\sf{\:\:1\: \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\red{\bf :\longmapsto\:Prime \: factorization \: of \: 72 =  {2}^{3} \times  {3}^{2}}

\blue{\bf :\longmapsto\:Prime \: factorization \: of \: 108}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:108\: \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:54\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:\:}} \\{\sf{}}&\underline{\sf{\:\:1\: \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

\blue{\bf :\longmapsto\:Prime \: factorization \: of \: 108 =  {2}^{2} \times  {3}^{3}}

Hence,

 \pink{ \bf \: LCM (48,72,108)}

 \rm \:  =  \:  \:   {2}^{4} \times  {3}^{3}

 \rm \:  =  \:  \:   16 \times 27

 \rm \:  =  \:  \:   432

\bf\implies \:LCM (48,72,108) = 432

Hence,

Three bells change together after 432 seconds

and

\rm :\longmapsto\:432 \: seconds \:  = 7 \: minutes \: 12 \: seconds

It implies,

  • They change simultaneously at 8 : 07 : 12 am

Similar questions