Math, asked by baesuzy76, 2 months ago

12.) x-1/x-2+x-3/x-4=10/3
pls answer this question if u know the solution <3​

Answers

Answered by devarchanc
1

Given:

      x - \frac{1}{x}  - 2 + x - \frac{3}{x} - 4 = \frac{10}{3}

To Find:

     x

Step-by-step explanation:

  •   x - \frac{1}{x}  - 2 + x - \frac{3}{x} - 4 = \frac{10}{3}
  • x - \frac{1}{x}  + x - \frac{3}{x} - 6 = \frac{10}{3}
  • 2x - \frac{1}{x}  - \frac{3}{x} - 6 = \frac{10}{3}
  • 2x - \frac{1-3}{x}  = \frac{10}{3} + 6
  • 2x - \frac{-2}{x}  = \frac{10}{3} + \frac{18}{3}
  • \frac{2x^{2} }{x} + \frac{2}{x}  = \frac{28}{3}
  • \frac{2x^{2} + 2}{x} = \frac{28}{3}
  • 2x^{2} + 2 = \frac{28 \times x}{3}
  • 2(x^{2} + 1) = \frac{28 \times x}{3}
  • 3(x^{2} + 1) = \frac{28 \times x}{2}
  • 3x^{2} + 3 = 14 \times x
  • 3x^{2} + 3 = 14x
  • 3x^{2} - 14x + 3 = 0
  • This equation can be represented as ax^{2} + bx +c = 0
  • a = 3, b = -14 and c =3
  • Now, using Shree Dharacharya Formula for x
  • x = \frac { - b \pm \sqrt{ b^2 - 4ac } } { 2a}
  • putting the value in it
  • x = \frac { - (-14) \pm \sqrt{ (-14)^2 - 4 \times 3 \times 3} } { 2\times 3}
  • x = \frac { 14 \pm \sqrt{ (196 - 36} } { 6}

x = \frac { 14 \pm \sqrt{ (160} } { 6}

Solving this we get two values of x.

Similar questions