13. A rubber ball is taken to depth 1 km inside water so that its volume reduces by 0.05%. What is the bulk
modulus for rubber?
(1) 2 x 10 N/m2
(2) 2 x 10 N/m2
(3) 2x 1010 N/m2
(4) 2 x 1011 N/m2
Answers
Answer:
- The Bulk modulus (B) of rubber is 2 × 10¹⁰ N / m²
Given:
- Given Depth (h) = 1 Km = 1000 m
- Volume Decreases (Δ V / V) = 0.05 %
Explanation:
From the formula we know,
⇒ P = P₀ + h ρ g
Where,
- P Denotes Pressure.
- P₀ Denotes atmospheric pressure.
- h Denotes Height.
- ρ Denotes Density.
- g Denotes Acceleration due to gravity.
Now,
⇒ P = P₀ + h ρ g
Substituting the values,
⇒ P = P₀ + 1000 × 1000 × 10
∵ [ h = 1000 m; ρ = 1000 Kg/m³ ]
⇒ P = P₀ + 10⁷
⇒ P - P₀ = 10⁷
∵ [ P - P₀ = Δ P ]
⇒ Δ P = 10⁷
⇒ Δ P = 10⁷ N/m².
∴ We got the Pressure Difference.
The volume reduces to 0.05 %[In Percentage]
Therefore,
⇒ Δ V / V = 0.05 %
⇒ Δ V / V = 0.05 / 100
⇒ Δ V / V = 5 × 10⁻² / 100
⇒ Δ V / V = 5 × 10⁻² × 10⁻²
⇒ Δ V / V = 5 × 10⁻⁴
⇒ Δ V / V = 5 × 10⁻⁴.
∴ We got the change in volume.
From the formula we know,
⇒ B = Δ P / ( Δ V / V )
Substituting the values,
⇒ B = 10⁷ / 5 × 10⁻⁴
⇒ B = 10⁷ × 10⁴ / 5
⇒ B = 0.2 × 10⁽⁷⁺⁴⁾
⇒ B = 0.2 × 10¹¹
⇒ B = 2 × 10¹⁰
⇒ B = 2 × 10¹⁰ N / m².
∴ The Bulk modulus (B) of rubber is 2 × 10¹⁰ N / m².
- Depth = 1 km
- Volume reduction = 0.05%
- Pressure at 1 km depth inside water :
P = > 1000×10×1000 N
= > 10^7 N / m^2
Let us assume the volume of the ball as V.
Hence,
Hence option 3 is correct.