Physics, asked by zikrausmanizikra, 9 months ago

13. A rubber ball is taken to depth 1 km inside water so that its volume reduces by 0.05%. What is the bulk
modulus for rubber?
(1) 2 x 10 N/m2
(2) 2 x 10 N/m2
(3) 2x 1010 N/m2
(4) 2 x 1011 N/m2​

Answers

Answered by ShivamKashyap08
65

Answer:

  • The Bulk modulus (B) of rubber is 2 × 10¹⁰ N / m²

Given:

  1. Given Depth (h) = 1 Km = 1000 m
  2. Volume Decreases (Δ V / V) = 0.05 %

Explanation:

\rule{300}{1.5}

From the formula we know,

P = P₀ + h ρ g

Where,

  • P Denotes Pressure.
  • P₀ Denotes atmospheric pressure.
  • h Denotes Height.
  • ρ Denotes Density.
  • g Denotes Acceleration due to gravity.

Now,

⇒ P = P₀ + h ρ g

Substituting the values,

⇒ P = P₀ + 1000 × 1000 × 10

[ h = 1000 m; ρ = 1000 Kg/m³ ]

⇒ P = P₀ + 10⁷

⇒ P - P₀ = 10⁷

[ P - P₀ = Δ P ]

⇒ Δ P = 10⁷

Δ P = 10⁷ N/m².

We got the Pressure Difference.

\rule{300}{1.5}

\rule{300}{1.5}

The volume reduces to 0.05 %[In Percentage]

Therefore,

⇒ Δ V / V = 0.05 %

⇒ Δ V / V = 0.05 / 100

⇒ Δ V / V = 5 × 10⁻² / 100

⇒ Δ V / V = 5 × 10⁻² × 10⁻²

⇒ Δ V / V = 5 × 10⁻⁴

Δ V / V = 5 × 10⁻⁴.

We got the change in volume.

\rule{300}{1.5}

\rule{300}{1.5}

From the formula we know,

B = Δ P / ( Δ V / V )

Substituting the values,

⇒ B = 10⁷ / 5 × 10⁻⁴

⇒ B = 10⁷ × 10⁴ / 5

⇒ B = 0.2 × 10⁽⁷⁺⁴⁾

⇒ B = 0.2 × 10¹¹

⇒ B = 2 × 10¹⁰

B = 2 × 10¹⁰ N / m².

The Bulk modulus (B) of rubber is 2 × 10¹⁰ N / m².

\rule{300}{1.5}

Answered by Saby123
39

</p><p>\tt{\pink{\huge{Hello!!! }}}

</p><p>\tt{\red{Given \: - }}

  • Depth = 1 km

  • Volume reduction = 0.05%

</p><p>\tt{\orange{Step-By-Step-Explaination \: - }}

  • Pressure at 1 km depth inside water :

P = > 1000×10×1000 N

= > 10^7 N / m^2

Let us assume the volume of the ball as V.

Hence,

 \tt{ \blue{ \frac{0.05}{100}  \times v \:  = { \delta}v}}

 \tt{ \purple{ { \beta} \:  =  \dfrac{ - PV}{{ \delta}v  } =   \dfrac{ -  {10}^{7} v}{ \dfrac{0.05V}{100} } = 2 \times  {10}^{10} N / m^2 }}

Hence option 3 is correct.

Similar questions