Geography, asked by singhajit1974kc, 8 months ago

13. Find 65th triangular number. *​

Answers

Answered by javeriakhanam2808200
0

Answer:

follow me

Explanation:

A triangular number or triangle number counts the objects that can form an equilateral triangle. The nth triangle number is the number of dots composing a triangle with n dots on a side, and is equal to the sum of the n natural numbers from 1 to n.

The general representation of a triangular number is

Tn= 1 + 2 + 3 + 4 +...+ (n-2) + (n-1) + n,

where n is a natural number.

This sum is Tn = n * (n + 1) / 2. This is the triangular number formula to find the nth triagular number.

To prove that this formula is true, write twice the general representation and rearange the terms as below

Tn = 1 + 2 + 3 + ...+ (n-2) + (n-1) + n

Tn = n + (n-1) + (n-2) +... + 3 + 2 + 1

---------------------------------------

Tn = (1 + n) + 2 + ( n - 1) + 3 + (n - 2) + ...+ (n-1) + 2 + n + 1

Tn = (1 + n) + (1 + n) + (1 + n) +...+ (1 + n) + (1 + n). There are n terms, so

2Tn = n * (n+1) or Tn = n * (n + 1) / 2Triangular Numbers Chart 1-100

n Δ

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

n Δ

11 66

12 78

13 91

14 105

15 120

16 136

17 153

18 171

19 190

20 210

n Δ

21 231

22 253

23 276

24 300

25 325

26 351

27 378

28 406

29 435

30 465

n Δ

31 496

32 528

33 561

34 595

35 630

36 666

37 703

38 741

39 780

40 820

n Δ

41 861

42 903

43 946

44 990

45 1035

46 1081

47 1128

48 1176

49 1225

50 1275

n Δ

51 1326

52 1378

53 1431

54 1485

55 1540

56 1596

57 1653

58 1711

59 1770

60 1830

n Δ

61 1891

62 1953

63 2016

64 2080

65 2145

66 2211

67 2278

68 2346

69 2415

70 2485

n Δ

71 2556

72 2628

73 2701

74 2775

75 2850

76 2926

77 3003

78 3081

79 3160

80 3240

n Δ

81 3321

82 3403

83 3486

84 3570

85 3655

86 3741

87 3828

88 3916

89 4005

90 4095

n Δ

91 4186

92 4278

93 4371

94 4465

95 4560

96 4656

97 4753

98 4851

99 4950

100 5050

Similar questions