Math, asked by Shivamhit, 13 days ago

(13) If a and b are rational number and 4+3root5/ 4-3root5 =a+broot5, Find the value of a and b​

Answers

Answered by Anonymous
19

\tt  \blue{☆}{ \: Solution \:  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \footnotesize☆ \: \footnotesize \tt \blue{Rationalise \:  the  \: denominator }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5}  }

 \footnotesize \tt{ \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} } = a + b \sqrt{5}  }

 \footnotesize \tt{ \frac{(4 + 3 \sqrt{5})^{2}  }{(4)^{2}  - (3 \sqrt{5} ) ^{2} } = a + b \sqrt{5}  }

 \footnotesize \tt{ \frac{ {4}^{2}  +2 \times 4 \times 3 \sqrt{5}  +  (3 \sqrt{5})^{2}  }{16  -45 } = a + b \sqrt{5}  }

 \footnotesize \tt{ \frac{16 +  24 \sqrt{5}    + 45}{16  -45 } = a + b \sqrt{5}  }

 \footnotesize \tt{ \frac{61+  24 \sqrt{5}   }{ - 29 } = a + b \sqrt{5}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize☆  \: \footnotesize \tt \blue{Comparing \:  values  \: we \:  get, }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ a =  \frac{ - 61}{29}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: b =   \frac{ - 24}{29} }

Similar questions