Math, asked by maheejaiswal, 10 months ago

13. If ços 30º = 2 cos²15° – 1, then cos 15ºanyone please help me ​

Answers

Answered by harendrachoubay
3

The value of \cos 15 is equal to \dfrac{{\sqrt{3}+1}}{2\sqrt{2}}.

Step-by-step explanation:

We have,

\cos 30=2\cos^2 15-1

To find, the value of \cos 15 = ?

\cos 30=2\cos^2 15-1

2\cos^2 15=\cos 30+1

2\cos^2 15=\dfrac{\sqrt{3}}{2}+1

We know that,

\cos 30=\dfrac{\sqrt{3}}{2}

2\cos^2 15=\dfrac{\sqrt{3}+2}{2}

\cos^2 15=\dfrac{\sqrt{3}+2}{4}

\cos 15=\sqrt{\dfrac{\sqrt{3}+2}{4}}

\cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}

\cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

∴ The value of \cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

Thus, the value of \cos 15 is equal to \dfrac{{\sqrt{3}+1}}{2\sqrt{2}}.

Similar questions