Math, asked by ramanandsonawane58, 5 hours ago

13. if f(x) = x2 + loge x + loge 5 then f' (1) is

Answers

Answered by ProximaNova
3

Answer:

3

Step-by-step explanation:

Given,

\sf \bf :\longmapsto f(x) = x^2 + log_ex + log_e5

Bow finding the derivative, use the formula:

\boxed{\boxed{\begin{array}{l}\dfrac{d}{dx} log_ex = \dfrac{1}{x}\\ \\ \hline \\  \dfrac{d}{dx}x^n = nx^{n-1}\end{array}}}

\sf \bf :\longmapsto f'(x) = 2x + \dfrac{1}{x} + 0

\sf \bf :\longmapsto f'(x) = 2x + \dfrac{1}{x}

\sf \bf :\longmapsto f'(1) = 2(1) + \dfrac{1}{1}

\sf \bf :\longmapsto f'(1) = 2 + 1 = 3

Additional Information:

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

Answered by rahulkaushik62002
0

Answer:

here's the right ans hope it's useful as follows:::

Attachments:
Similar questions