Math, asked by sushil18322, 9 months ago

13. The area of a square field is 625m2. A rectangle
whose length is 4 times its breaslth has its perimeter
equals to Square perimeter. Find the area of rectangle

Answers

Answered by rubyeliza456
1

Answer:

400m^2

Step-by-step explanation:

Area of square = 625m^2

side of square = √625m^2

                        = 25 m^2

perimeter of square = 4 × side

                                  = 4 × 25 = 100 m

perimeter of rectangle = 100 m

ATQ, breadth = 'x'

         length = 4x

perimeter of rectangle = 2(l+b)

                                      =  2( 4x + x)

                                      = 8x + 2x

                                      = 10x

100 = 10x

100/10 = x

10 = x

therefore Breadth = 10 m and length (4x) = 4×10 = 40 m

Area of rectangle = l×b = 40 × 10 = 400 m^2

THEREFORE THE AREA OF RECTANGLE IS 400m^2

               

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
17

\huge\sf\pink{Answer}

☞ Your Answer is 400 m²

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Area of square field = 625 m²

✭ A rectangle has its length 4 times it's breadth

✭ Perimeter of rectangle is equal to perimeter of square

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Area of rectangle?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

Perimeter of a square is given by,

\underline{\boxed{\sf Area_{square} = a^2}}

Substituting the given values,

\sf a^2=625

\sf a=\sqrt{625}

\sf a=25 \ m

Perimeter of square is given by,

\underline{\boxed{\sf Perimeter_{square} = 4a}}

Substituting the values,

\sf Perimeter = 4a

\sf 4\times 25

\sf \red{Perimeter_{square} = 100 \ m}

So now let the length of rectangle be 4x & breadth be x

Perimeter of rectangle is given by,

\underline{\boxed{Perimeter_{rectangle} = 2(l+b)}}

Substituting the values,

\sf Perimeter = 2(4x+x)

\sf 2(5x)

\sf \green{Perimeter_{rectangle} = 10x}

Equating perimeter of rectangle and square

\sf 10x=100

\sf x=\dfrac{100}{10}

\sf x=10

Length of rectangle = 4 × 10 = 40 m

Breadth of rectangle = 10 m

Area of rectangle is given by,

\underline{\boxed{\sf Area_{rectangle} = Length\times Breadth}}

Substituting the values,

»» \sf Area = lb

»» \sf 40\times 10

»» \sf \orange{Area \ of \ rectangle = 400 \ m^2}

━━━━━━━━━━━━━━━━━━

Similar questions