Math, asked by kalibhaiya2, 2 months ago

13. x dy - y dx + a(x2 + y2)dx = 0​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

xdy - ydx + a( {x}^{2}  +  {y}^{2} )dx = 0 \\

 \implies \: a( {x}^{2}  +  {y}^{2} )dx = ydx - xdy \\

 \implies \: a \frac{( {x}^{2}  +  {y}^{2} )}{ {y}^{2} }dx = \frac{ ydx - xdy}{ {y}^{2} }   \\

 \implies \: a( \frac{ {x}^{2} }{ {y}^{2} }  + 1)dx = d( \frac{x}{y} ) \\

 \implies \: adx =  \frac{d( \frac{x}{y} )}{1 +  \frac{ {x}^{2} }{ {y}^{2} } }  \\

 \implies \: a \int \: dx = \int  \frac{d( \frac{x}{y} )}{1 +  \frac{ {x}^{2} }{ {y}^{2} } }  \\

 \implies \: ax + c =  \tan ^{ - 1} ( \frac{x}{ y} )  \\

 \implies \tan(ax + c)  =  \frac{x}{y}  \\

 \implies \: y = x \cot(ax + c) \\

Similar questions