Math, asked by Anonymous, 3 months ago

13(y+7) = 3(y-1)
Solve it :D

Answers

Answered by Anonymous
2

Answer:

Explanation:

★To Solve :

 \rm \: \blue{13(y+7) = 3(y-1)}

⠀⠀⠀⠀⠀

★SOLUTION :

\rm\red\leadsto{13(y+7) = 3(y-1)}

\rm\red\leadsto{13\times{y}+13\times7= 3\times{y}-3\times1}

\rm\red\leadsto{13y+91=3y-3}

\rm\red\leadsto{13y-3y=-3-91}

\rm\red\leadsto{10y=-94}

\rm\red\leadsto{} y =\dfrac{ { \cancel{-94}}^{ \:-45 } }{ { \cancel{10}}^{ \: 5} }

\rm\red\leadsto{y=}\dfrac{-47}{5}

____________________

Answered by Bhawnadhanik29112000
1

Answer:

Polynomial equation solver

13(y+7) = 3(y-1)

Standard form:

10y + 94 = 0

Factorization:

2(5y + 47) = 0

Solutions:

y = −94

10

= −9.4

Step-by-step explanation:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    1/3*(y+7)-(3*(y-1))=0  

Step by step solution :

STEP

1

:

Equation at the end of step 1

  1                

 (— • (y + 7)) -  3 • (y - 1)  = 0  

  3                

STEP

2

:

           1

Simplify   —

           3

Equation at the end of step

2

:

  1                

 (— • (y + 7)) -  3 • (y - 1)  = 0  

  3                

STEP

3

:

Equation at the end of step 3

 (y + 7)    

 ——————— -  3 • (y - 1)  = 0  

    3        

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

                  3 • (y - 1)     3 • (y - 1) • 3

   3 • (y - 1) =  ———————————  =  ———————————————

                       1                 3        

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator .

Similar questions