134. tan (A + B - C) = 1,
sin (B + C - A) = 1 and
cot (C + A - B) = 1, find
A, B and C.
Answers
Answered by
0
Answer:
We have ,
tan( A + B - C) = 1 and sec (B + C - A) = 2
⇒ tan( A + B - C) = tan45
∘
and sec (B + C - A) = sec60
∘
⇒ A + B - C =45
∘
and B + C - A = 60
∘
⇒ ( A + B - C) + (B + C - A) = 45
∘
+60
∘
⇒ 2B = 105
∘
⇒B=52
2
1
∘
Putting B=52
2
1
∘
in B + C - A = 60
∘
, we get
52
2
1
∘
+C−A=60
∘
⇒C−A=7
2
1
∘
...(i)
Also , in ΔABC , we have
A + B + C = 180
∘
⇒A+52
2
1
∘
+C=180
∘
[∵B=52
2
1
∘
]
⇒C+A=127
2
1
∘
...(ii)
Adding and subtracting (i) and (ii) , we get ,
2C = 135
∘
and 2A = 120
∘
⇒C=67
2
1
∘
and A = 60
∘
Hence , A = 60
∘
, B = 52
2
1
∘
and C=67
2
1
∘
Similar questions