Math, asked by padhansanjayakumar98, 3 months ago

139. Suppose for 30 observations, the
variance is 40. If all the observations
are increased by 10, then the
variance will be: step by step explain​

Answers

Answered by mathdude500
3

.

\large\underline{\sf{Solution-}}

 \sf \: Let \:  x_1,x_2,x_3,---,x_{30} \: be \:  30 \:  observations.

 \sf \: Let \:  \overline{x} \:  be \:  the \:  mean \:  and  \: v  \: be  \: the \:  variance \: of \: 30 \: observations.

We know,

Mean is given by

\rm :\longmapsto\: \overline{x} \:  = \dfrac{1}{30}\sum_{i=1}^{30} \: x_i

and

Variance is given by

\rm :\longmapsto\:v = \dfrac{1}{n}\sum_{i=1}^{30}  { \: (x_i \:  -  \:  \overline{x} \: )}^{2} -  -  -  - (1)

Now,

Each observation is increased by 10.

\rm :\longmapsto\:x_1 + 10,x_2 + 10,x_3 + 10,---,x_{30} + 10 \:  be \:  30 \:  observations

\bf\implies \:X_i = x_i \:  +  \: 10 \:  \: where \: i \:  =  \: 1 \: to \: 30

Now mean,

\rm :\longmapsto\: \overline{X} \:  = \dfrac{1}{30}\sum_{i=1}^{30} \:( x_i + 10)

\rm :\longmapsto\: \overline{X} \:  = \dfrac{1}{30}\sum_{i=1}^{30} \: x_i \:  +  \: 10

\bf\implies \: \overline{X} = \overline{x} + 10

Now,

Variance, V is given by

\rm :\longmapsto\:V = \dfrac{1}{n}\sum_{i=1}^{30}  { \: (X_i \:  -  \:  \overline{X} \: )}^{2}

\rm :\longmapsto\:V = \dfrac{1}{n}\sum_{i=1}^{30}  { \bigg( \: (x_i + 10) \:  -  \:  (\overline{x}  + 10\: ) \bigg)}^{2}

\rm :\longmapsto\:V = \dfrac{1}{n}\sum_{i=1}^{30}  { \bigg( \: x_i + 10 \:  -  \:  \overline{x}   -  10\: \bigg)}^{2}

\rm :\longmapsto\:V = \dfrac{1}{n}\sum_{i=1}^{30}  { \bigg( \: x_i  \:  -  \:  \overline{x}\: \bigg)}^{2}

\bf\implies \:V = v

\bf\implies \:Variance \: remains \: unchanged

Similar questions