13th question answer is C how?
Attachments:
Answers
Answered by
3
Given
Sec θ=3k, tan θ = 3/k
Sec^2 θ - tan ^2 θ =1
(3k)^2 - (3/k)^2=1
9k^2 - 9/k^2 =1
Divide each term with 9
k^2 - 1/k^2 = 1/9
Option C is correct
Sec θ=3k, tan θ = 3/k
Sec^2 θ - tan ^2 θ =1
(3k)^2 - (3/k)^2=1
9k^2 - 9/k^2 =1
Divide each term with 9
k^2 - 1/k^2 = 1/9
Option C is correct
mysticd:
u'r welcome
Answered by
1
Hi Monica !!
____________________________________________________________
sec∅= 3k and tan∅= 3/k
sec²∅= 9k²
and Tan²∅= 9/k²
we know sec²∅- tan²∅=1
9k²-9/k²=1
9(k²-1/k²)=1
k²-1/k²=1/9
___________________________________________________________________________________________________________________________
____________________________________________________________
sec∅= 3k and tan∅= 3/k
sec²∅= 9k²
and Tan²∅= 9/k²
we know sec²∅- tan²∅=1
9k²-9/k²=1
9(k²-1/k²)=1
k²-1/k²=1/9
___________________________________________________________________________________________________________________________
Similar questions