Math, asked by izharullah277, 1 month ago

14/2-50/2-25/4+100/5-2/4÷2/6-12/18÷2/4​

Answers

Answered by admr333
0

Answer:

- 85/12

Step-by-step explanation:

14/2 - 50/2 - 25/4 + 100/5 - (2/4 ÷ 2/6) - (12/18 ÷ 2/4​)

- 17/4 - 3/2 - 4/3

= - 85/12

Answered by ariyakaushik092
0

Step-by-step explanation:

Solution−

Given inequation is

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(\dfrac{1}{9} \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(

9

1

)

x

1

can be rewritten as

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(\dfrac{1}{ {3}^{2} } \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(

3

2

1

)

x

1

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg( {3}^{ - 2} \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(3

−2

)

x

1

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(3\bigg) }^{\dfrac{ - 2}{x} } \\ \end{gathered}

3

x+2

>(3)

x

−2

\rm\implies \:x + 2 > - \dfrac{2}{x}⟹x+2>−

x

2

\rm \: x + 2 + \dfrac{2}{x} > 0x+2+

x

2

>0

\rm \: \dfrac{ {x}^{2} + 2x + 2}{x} > 0

x

x

2

+2x+2

>0

Now, x² + 2x + 2 is a quadratic polynomial such that coefficient of x² = 1 > 0 and Discriminant, D = 4 - 8 = - 4 < 0

So, we know, in a quadratic expression ax² + bx + c, if a > 0 and D < 0, then ax² + bx + c > 0

\rm\implies \: {x}^{2} + 2x + 2 > 0⟹x

2

+2x+2>0

Thus,

\rm\implies \:\dfrac{1}{x} > 0⟹

x

1

>0

\rm\implies \:x > 0⟹x>0

\rm\implies \:x \in \: (0, \: \infty )⟹x∈(0,∞)

Similar questions