14 If 2a - 3b = 3 and ab = 2, find the value of 8a3-27b3
Answers
Answered by
4
Step-by-step explanation:
Given:-
2a - 3b = 3
and ab = 2
To find:-
Find the value of 8a^3-27b^3 ?
Solution:-
Given that
2a - 3b = 3 --------(1)
and ab = 2--------(2)
On cubing both sides of the equation (1)
=>(2a-3b)^3 = (3)^3
LHS is in the form of (a-b)^3
Where , a= 2a and b= 3b
We know that
(a-b)^3 = a^3-3a^2b+3ab^2-b^3
=>(a-b)^3=a^3-3ab(a-b)-b^3
On applying this formula for (2a-3b)^3
(2a)^3-3(2a)(3b)(2a-3b)-(3b)^3
therefore (2a-3b)^3 = (3)^3
=> (2a)^3-3(2a)(3b)(2a-3b)-(3b)^3 = 3^3
=> 8a^3-18ab(2a-3b)-27b^3 = 27
=> 8a^3-18ab(3) -27b^3 = 27
(from (1))
=>8a^3-54ab-27b^3 = 27
=>8a^3-54(2)-27b^3 = 27
(from (2))
=> 8a^3-27b^3 -108= 27
=> 8a^3-27b^3 = 27+108
=> 8a^3 -27b^3 = 135
Answer:-
The value of 8a^3-27b^3 for the given problem is 135
Used formulae:-
- (a-b)^3 = a^3-3a^2b+3ab^2-b^3
- (a-b)^3=a^3-3ab(a-b)-b^3
Similar questions