14. If sin 3 thetha = cos (thetha - 6°), where 3thetha and thetha - 6° are both acute angles, find the value of thetha.
Answers
Answered by
1
Answer :
θ = 24°
Solution :
- Given : sin3θ = cos(θ - 6°)
- To find : θ = ?
We know that sine and cosine are complements of each other , ie ;
• sin∅ = cos(90° - ∅)
• cos∅ = sin(90° - ∅)
Thus ,
=> sin3θ = cos(θ - 6°)
=> sin3θ = sin[90° - (θ - 6°)]
=> 3θ = 90° - (θ - 6°)
=> 3θ = 90° - θ + 6°
=> 3θ + θ = 90° + 6°
=> 4θ = 96°
=> θ = 96°/4
=> θ = 24°
Hence θ = 24° .
Similar questions