Math, asked by jadejahetviba9, 3 months ago

14. If sin A = 1/2, find the value of cot A.​

Answers

Answered by Celiana
4

Answer:

CotA=\sqrt{3}

3

Step-by-step explanation:

sin A = 1/2

we know that sin²A + cos²A = 1

so

cos²A= 1 - (1/2)²

cos²A= 1 - 1/4

cos²A = 3/4

cosA= √3/√4

cosA= √3/2

Now, cotA = cosA/ sinA

So, CotA= \begin{gathered}\frac{\frac{\sqrt{3} }{2} }{\frac{1}{2} } \\= \sqrt{3}\end{gathered}

2

1

2

3

=

3

Thus, CotA= square root 3

Happy to help ;-)

Please mark as brainliest!

Answered by nidhiishah
0

Answer:

sin A = 1/2

cos A = ?

Sin² A + cos² A = 1

(1/2)² + cos²A = 1

cos²A = 1- 1/4

= 4-1/4

cos²A = 3/4

cos A = √3/ 2

therefore, cosA / sinA = cotA

√3/2 divide by 1/2

√3/2 x 2/1

cotA = √3

Similar questions