14. If sin A = 1/2, find the value of cot A.
Answers
Answered by
4
Answer:
CotA=\sqrt{3}
3
Step-by-step explanation:
sin A = 1/2
we know that sin²A + cos²A = 1
so
cos²A= 1 - (1/2)²
cos²A= 1 - 1/4
cos²A = 3/4
cosA= √3/√4
cosA= √3/2
Now, cotA = cosA/ sinA
So, CotA= \begin{gathered}\frac{\frac{\sqrt{3} }{2} }{\frac{1}{2} } \\= \sqrt{3}\end{gathered}
2
1
2
3
=
3
Thus, CotA= square root 3
Happy to help ;-)
Please mark as brainliest!
Answered by
0
Answer:
sin A = 1/2
cos A = ?
Sin² A + cos² A = 1
(1/2)² + cos²A = 1
cos²A = 1- 1/4
= 4-1/4
cos²A = 3/4
cos A = √3/ 2
therefore, cosA / sinA = cotA
√3/2 divide by 1/2
√3/2 x 2/1
cotA = √3
Similar questions