Math, asked by krish94947, 11 months ago


14. If the radius of a sphere is increased by 20 %, by what per cent does its volume
increase?​

Answers

Answered by YameshPant
26

Step-by-step explanation:

let \: the \: original \: radius \: be \: r \: and \: \\  volume \: be \: v  \: then \\ v =  \frac{4}{3} \pi {r}^{3} \\ now \: new \: radius  =original \: radius \:  +  20\% \: of \: r \\  =  r + \frac{20r}{100} =  \frac{6r}{5}  \\ therefore \: new \: volume \:  =  \frac{4}{3} \pi{(\frac{6r}{5})}^{3}   \\  =  \frac{4}{3} \pi {r}^{3}  \times  \frac{216}{125}  \\volume \: increased = \frac{4}{3} \pi {r}^{3}  \times  \frac{216}{125}  \:  -   \frac{4}{3} \pi {r}^{3} =  \frac{4}{3} \pi {r}^{3}( \frac{91}{125} ) \\ \% \: of \: volume \: inreased =  \frac{increased \: volume}{original \: volume}  \times 100\% \\  =  \frac{\frac{4}{3} \pi {r}^{3}( \frac{91}{125} )}{ \frac{4}{3} \pi {r}^{3} }  \times 100 \\  =  \frac{9100}{125}  = 72.8\%

Similar questions