CBSE BOARD X, asked by vaishakrajeev40, 1 year ago

14. In the below figure, the line segment XY is parallel to side AC of ABC and it divides the triangle into two equal parts of equal areas. Find the ratio AX AB .

Answers

Answered by kameena1
11

HEY.....

HERE'S YOUR....

HIGH RATED GABRU---HARSH ♦️♦️♦️♦️♦️♦️♦️♦️♦️♦️Step-by-step explanation:Sol: In ΔABC, XY || AC and area of ΔBXY = area of quadrilateral XYCA ⇒ ar (ΔABC) = 2.ar (ΔBXY) ----------------(1) XY || AC and BA is a transversal. ⇒ ∠BXY = ∠BAC --------------------------- (2) So, In ΔBAC and ΔBXY, ∠XBY = ∠ABC (common angle) ∠BXY = ∠BAC [from equation (2)] ⇒ ΔBAC ~ ΔBXY ⇒ ar(ΔBAC) / ar(ΔBXY) = BA2 / BX2 ⇒ BA = √2 BX ⇒ BA = √2 (BA – AX) ⇒ (√2 – 1) BA = √2 AX ⇒ AX/XB = (√2 – 1) / √2

♦️♦️♦️♦️♦️♦️♦️♦️♦️♦️


KHUSHIIIIIIIII: nyi rachiyata
KHUSHIIIIIIIII: Devi Riya
KHUSHIIIIIIIII: yoo
KHUSHIIIIIIIII: khiiii
KHUSHIIIIIIIII: su su su su
Answered by malti010872
6
Yooooo!!!!!!

Ur answer is in the attachment above....

Hope it helps!!!

\mathcal{RIYA}
Attachments:

kameena1: ohhh.........jawani mein aisa naa bolo warna ladke bhav nai denge......xd
kameena1: eheheheh
kameena1: bhad mein gyi jawani na....!!!........hahahahahahaha
kameena1: ohhhhh
Similar questions