Math, asked by Anonymous, 1 year ago

14. log[logbase3(logbase4 x)] = 1


brainlyinspector56: hello

Answers

Answered by tahseen619
20

 log_{}( log_{3}( log_{4}(x) ) )  =  log_{1}(1)  \\   log_{3}( log_{4}(x) )  = 1 \\  log_{3}( log_{4}(x) )  =  log_{3}(3)  \\  log_{4}(x)  = 3 \\  log_{4}(x)   = 3log_{4}(4)  \\ x =  {4}^{3}  \\ x = 64

waqarsd: log is not defined for base 1
Answered by waqarsd
18

\large{ \bold{ log  \: log_{3} \:  log_{4} \: x = 1}} \\  \\  =  > \large{ \bold{raising \: the \: term \: on \: lhs \: and \: rhs \: to \: the \: power \: e}} \\  \\  =  > \large{ \bold{  {e}^{ log log_{3} log_{4}x  }  =  {e}^{1} }} \\  \\  =  > \large{ \bold{ log_{3} log_{4}x = e  }} \\  \\ \large{ \bold{now \: raising \: the \: terms \: to \: the \: power \: 3}} \\  \\  =  > \large{ \bold{ {3}^{ log_{3} log_{4}x }  =  {3}^{e} }} \\  \\  =  >\large{ \bold{  log_{4}x =  {3}^{e} }} \\  \\ \large{ \bold{raising \: the \: terms \: to \: the \: power \: 4}} \\  \\   =  > \large{ \bold{ {4}^{ log_{4}x}  =  {4}^{ {3}^{e} } }} \\  \\  =  > \large{ \bold{x =  {4}^{ {3}^{e} } }} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \color{violet}{ \boxed{\large{ \bold{\mathfrak{ \: therefore \: x \:  =  {4}^{ {3}^{e} } }}}}}

  \color{blue}{ \large{ \bold{Hope {}^{ \infty }   \: it  \: Helps {}^{ \infty } }}}

Similar questions