Math, asked by M40NEERAJYt, 6 months ago

14
MATH
4.
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.​

Answers

Answered by nithinsrisaiachieve
0

Answer:

Given: A circle with centre O and diameter AB. Let PQ be the tangent at point A & Rs be the point B.

Proof: Since PQ is a tangent at point A.

OA⊥ PQ(Tangent at any point of circle is perpendicular to the radius through point of contact).

∠OQP=90

o

…………(1)

OB⊥ RS

∠OBS=90

o

……………(2)

From (1) & (2)

∠OAP=∠OBS

i.e., ∠BAP=∠ABS

for lines PQ & RS and transversal AB

∠BAP=∠ABS i.e., both alternate angles are equal.

So, lines are parallel.

$$\therefore PQ||RS

Step-by-step explanation:

with diagram

Similar questions