Math, asked by sundarmath1987, 10 months ago


14. The area and the diagonal of a rectangle are 60 cm2 and 13 cm. Find the length.​

Answers

Answered by harendrachoubay
0

The length of the rectangle is 5 cm or 12 cm.

Step-by-step explanation:

Let length of the rectangle = l and breadth of the rectangle = b

∴ l × b = 60  

l =  \dfrac{60}{b}                            ... (1)

and  \sqrt{l^{2} + b^{2} } = 13            ... (2)

[since, diagonal = \sqrt{l^{2} + b^{2} } ]

Squaring (1) in both sides, we get

l^{2} + b^{2} = 169                                                                   ... (3)

From (1) and (3), we get

\dfrac{3600}{b^{2} } + b^{2}= 169[

⇒  b^{4} - 169b^{2} + 3600 = 0   

Put  b^{2} = x

x^{2} - 169x + 3600 = 0     

x^{2} - 144x - 25x + 3600 = 0      

⇒ x = 144 or 25

∴ b = ± 12 or ± 5

b = 12 cm or 5 cm (Since, length never be negative]

Putting the value of b in (1), we get

l = 5 cm or 12 cm

Hence, the length of the rectangle is 5 cm or 12 cm.

Similar questions