Math, asked by jindalnikhil34445, 4 months ago

14. The centre of a circle is (2a, a - 7). Find the values of a if the circle passes through the point (11,9) and has diameter 10/2 units.

Answers

Answered by farhaanaarif84
0

LetthegivenpointP(x

1

,y

1

)=(11,−9)lieonacirclewithcentreat

C(x

2

,y

2

)=(2a,a−7)&radius=r.

ThenPC=r..(i)

Giventhatthediameterofthecircle=10

2

units.

∴r=

2

diameter

=

2

10

2

units

=5

2

units..(ii).

Again,bydistanceformula,d=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

∴PC=d=

(11−2a)

2

+(−9−a+7)

2

=

5a

2

−40a+125

.

∴From(i)&(ii)weget

5a

2

−40a+125=(5

2

)

2

⟹5a

2

−40a+75=0

⟹(a−5)(5a−3)=0

⟹a=5,

5

3

Ansa=5,

5

3

Answered by kanhaiya03
0

Answer:

Below

Step-by-step explanation:

D= 5

Radius= 5/2

Equation of circle is (x-a)^2 + (y-b)^2 = r^2

It passes through pts. (11,9). So, these points must satisfy equation of circle

Centre of circle is (2a,a-7)

x=11 y=9 a=2a b= a-7

Therefore, (11-2a)^2 +[9-(a-7)]^2 = (5/2)^2

121 +4a^2 - 44a + (16 - a) ^2 = 25/4

4[121 + 4a^2 - 44a + 256 + a^2 + 32a] = 25

4[378 + 5a^2 - 12a] =25

On further solving you will get the value of A

Similar questions