Science, asked by smdaquib39871, 10 months ago

14. The radius of Jupiter is 11 times the radius of the earth. Calculate the ratio of the volumes of Jupiter and the earth. How many earths can Jupiter accommodate?

Answers

Answered by rini9454
0

Answer:

Stars and Solar System

Calculate the ratio of the volumes of Jupiter and the Earth. How many Earths can Jupiter accommodate? Given, radius of Jupiter is 11 times the radius of Earth. So, 1331 Earths can be accommodated in one Jupiter

Explanation:

plz mark me as brainliest

Answered by ᏞovingHeart
39

                     G℩νεη╺

  • Radius of Jupiter = 11 times the radius of Earth.

___________________________

                      τσ F℩ηδ╺

  • Ratio of the volumes of Jupiter and Earth.
  • Number of Earths that can accommodate in Jupiter.

___________________________

                     Sσℓυτ℩ση╺

If radius of Earth is taken as 1 unit, then the radius of Jupiter will be 11 units (11 times the radius of Earth).

✠ Formula for calculating volume of a sphere:

              \boxed{\orange{\sf \dfrac{4}{3} \times \pi \times r^3}}

Where,

r = radius

π = constant (3.14)

  • Volume of Jupiter = \sf \dfrac{4}{3} \times \pi \times r^3

☞  \sf \dfrac{4}{3} \times \pi \times (11)^3

☞  \sf \dfrac{4}{3} \times \pi \times 1331

  • Volume of Earth = \sf \dfrac{4}{3} \times \pi \times r^3

\sf \dfrac{4}{3} \times \pi \times (1)^3

\sf \dfrac{4}{3} \times \pi \times 1

___________________________

                     ℜατ℩σ╺

\sf {\orange{\dfrac{Volume\;of\;Jupiter}{Volume \; of \; Earth}}}

\implies \sf \dfrac{4 \times \pi \times 1331 \times 3}{4 \times 3 \times \pi \times 1}

\implies \sf \dfrac{1331}{1}

\sf \implies 133:1

______________

Similar questions