15. (1 + coto - coseco) (1 + tano + seco) = 2 prove
Answers
Answered by
2
Answer:
(1+cotθ-cscθ)(1+tanθ+secθ) =
1 + tanθ + secθ + cotθ + 1 + cotθsecθ - cscθ - cscθtanθ - cscθsecθ =
2 + tanθ + secθ + cotθ + (cosθ/sinθ)(1/cosθ) - cscθ - (1/sinθ)(sinθ/cosθ) - (1/sinθ)(1/cosθ) =
2 + tanθ + secθ + cotθ + cscθ - cscθ - secθ - (1/sinθ)(1/cosθ) =
2 + tanθ + cotθ - (1/sinθ)(1/cosθ) =
2 + sinθ/cosθ + cosθ/sinθ - (1/sinθ)(1/cosθ) =
2 + (sin²θ + cos²θ - 1) / (sinθcosθ) =
2 + (1-1) / (sinθcosθ) =
2 + 0 =
2
Similar questions