Math, asked by shivanisiri31, 10 months ago

√15-√14/√15+√14= a- b√210. Find a and b.

Answers

Answered by Anonymous
2

Answer:

a = 29

b = 2

Step-by-step explanation:

Given that,

 \frac{ \sqrt{15}  -  \sqrt{14} }{ \sqrt{15} +  \sqrt{14}  }  = a - b \sqrt{210}

To find the values of a and b.

We need to rationalize the denominator.

Therefore, we will get,

 =  >  \frac{ \sqrt{15}  -  \sqrt{14} }{ \sqrt{15} +  \sqrt{14}  }  \times  \frac{ \sqrt{15}  -  \sqrt{14} }{ \sqrt{15}   -  \sqrt{14}  }  = a - b \sqrt{210}  \\  \\  =  >  \frac{ {( \sqrt{15}  -  \sqrt{14}) }^{2} }{ {( \sqrt{15} )}^{2}  -  {( \sqrt{14} )}^{2} }  = a - b \sqrt{210}  \\  \\  =  >  \frac{ {( \sqrt{15} )}^{2}  +  {( \sqrt{14})  }^{2}  - 2( \sqrt{15})( \sqrt{14}  )  }{15 - 14}  = a - b \sqrt{210}  \\  \\  =  >  \frac{15 + 14 - 2 \sqrt{210} }{1}  = a - b \sqrt{210}  \\  \\  =  > 29 - 2 \sqrt{210}  = a - b \sqrt{210}

Now, comparing the rational and irrational terms on the both sides, we have,

=> a = 29

=> b = 2

Hence, the required value of a = 29 and b = 2.

Similar questions