Science, asked by shakirkngr6, 5 months ago

15. A constant force acts on an object of mass 8kg for a duration of 4 sec. It

increases the object's velocity from 12ms-1 to 48 ms-1 . Find the magnitude of

applied force.​

Answers

Answered by itzcutiemisty
13

Answer:

72 N

Explanation:

\underline{\bigstar\:\textsf{Given:}}

  • Mass (m) = 8 kg
  • Time (t) = 4 s
  • Initial velocity (u) = 12 m/s
  • Final velocity (v) = 48 m/s

\underline{\bigstar\:\textsf{To\:find:}}

  • Magnitude of force (F) = ?

\underline{\bigstar\:\textsf{Solution:}}

By the second law of motion, we comes to know that \blue{\sf{Force(F)\:=\:mass\:\times\:acceleration(a)}}

Here, we don't know the acceleration, but we know that \green{\sf{acceleration\:=\:\dfrac{v\:-\:u}{t}}}

Here, v = Final velocity

u = Initial velocity

t = time

From this we can find acceleration and then the force applied.

\:

\longmapsto\:\sf{a\:=\:\dfrac{48\:-\:12}{4}}

\:

\longmapsto\:\sf{a\:=\:\dfrac{36}{4}}

\:

\longmapsto\:\sf{\underline{\underline{Acceleration\:=\:9\:m/s^2}}}

\:

Now, let's find the force !

\:

\:\::\implies F = 8 × 9

\:

\large\:\::\implies\underline{\boxed{\mathrm\purple{Force\:applied\:is\:72\:N}}}

Answered by shaktisrivastava1234
23

 \Huge \bf  \underline{\underline{Answer:}}

 \Large \bf{Given}

 \implies \sf{Mass(m)=8kg}

 \implies \sf{Initial  \: velocity(u)=12m {s}^{ - 1} }

 \implies \sf{Final  \: velocity(v)=48m {s}^{ - 1} }

 \implies \sf{Time(t)=4sec}

 \Large \bf{To  \: find}

 \leadsto \sf{Force  \: applied \:  on  \: object.}

 \Large \bf{Formula \:  used}

  \boxed {\longmapsto{ \bf{Force(F)=Mass(m)×Acceleration(a)}}}

 \boxed {\longmapsto{ \bf{Acceleration(a)= \frac{Final \:  velocity(v)-Initial  \: velocity(u)}{Time(t)}\:\:\:[ by\:second\:equation\:of\:motion] }}}

 \Large \bf{Concept  \: used}

 \sf{Here,we \:  doesn't  \: know  \: acceleration \:  of  \: object \:  so,  }

 \sf{first \: we \: find \: acceleration \: of \: object.}

 \Large \bf{According \: to \: Question}

 \bf{ \longrightarrow{Acceleration(a)= \frac{Final \:  velocity(v)-Initial  \: velocity(u)}{Time(t)} }}

\sf{ \longrightarrow{Acceleration(a)= \frac{48 - 12}{4} =  \frac{36}{4} m / {s}^{2} = 9m/ {s}^{2} }}

\sf{ \longrightarrow{Force(F)=Mass(m)×Acceleration(a)}}

\sf{ \longrightarrow{Force(F) = 8kg×9m/ {s}^{2} }}

\sf{ \longrightarrow{Force(F)  = 72N}}

________________________________________________________________________________

Similar questions