Math, asked by gurpreetgora13, 8 months ago

15. Can x, y be found to satisfy the following equations simultaneously?
3/x-2y=1
4/x+5y=2
9x - 4y + 23 = 0
If so, find them.​

Answers

Answered by guptasant72
1

Answer:

Given :

A body has a displacement (2, 4, -6) to (6, -4, 4) under a constant force of \sf{2\hat{i}+3\hat{j}-\hat{k}}2

i

^

+3

j

^

k

^

To find :

Work done

Knowledge required :

Dot product of two different orthogonal vectors is equals to 0 ; \sf{\hat{i}\;.\;\hat{j}=\hat{j}\;.\;\hat{k}=\hat{k}\;.\;\hat{i}=0}

i

^

.

j

^

=

j

^

.

k

^

=

k

^

.

i

^

=0

and Dot product of an orthogonal vector with itself is equals to 1 ; \sf{\hat{i}\;.\;\hat{i}=\hat{j}\;.\;\hat{j}=\hat{k}\;.\;\hat{k}=1}

i

^

.

i

^

=

j

^

.

j

^

=

k

^

.

k

^

=1

Formulae to calculate work done

\star\;\;\boxed{\sf{W=\vec{F}\;.\;\vec{d}}}⋆

W=

F

.

d

[ Work done is given by the dot product of force and displacement vector ; where F is Force and d is displacement ]

Solution :

Given, position vectors of the body

\sf{\vec{r_1}=2\;\hat{i}+4\;\hat{j}-6\;\hat{k}}

r

1

=2

i

^

+4

j

^

−6

k

^

and

\sf{\vec{r_2}=6\;\hat{i}-4\;\hat{j}+4\;\hat{k}}

r

2

=6

i

^

−4

j

^

+4

k

^

Calculating displacement of body

Displacement is known as the change in position vector.

so,

\implies\sf{\vec{d}=\vec{r_2}-\vec{r_1}}⟹

d

=

r

2

r

1

\implies\sf{\vec{d}=(6\;\hat{i}-4\;\hat{j}+4\;\hat{k})-(2\;\hat{i}+4\;\hat{j}-6\;\hat{k})}⟹

d

=(6

i

^

−4

j

^

+4

k

^

)−(2

i

^

+4

j

^

−6

k

^

)

\implies\sf{\vec{d}=6\;\hat{i}-4\;\hat{j}+4\;\hat{k}-2\;\hat{i}-4\;\hat{j}+6\;\hat{k}}⟹

d

=6

i

^

−4

j

^

+4

k

^

−2

i

^

−4

j

^

+6

k

^

\underline{\implies\sf{\vec{d}=4\;\hat{i}-8\;\hat{j}+10\;\hat{k}}}

d

=4

i

^

−8

j

^

+10

k

^

Calculating Work done by the body

Given,

\sf{\vec{F}=2\;\hat{i}+3\;\hat{j}-\;\hat{k}}

F

=2

i

^

+3

j

^

k

^

Using formula

\implies\sf{W=\vec{F}\;.\;\vec{d}}⟹W=

F

.

d

\implies\sf{W=(2\;\hat{i}+3\;\hat{j}-\;\hat{k})\;.\;(4\;\hat{i}-8\;\hat{j}+10\;\hat{k})}⟹W=(2

i

^

+3

j

^

k

^

).(4

i

^

−8

j

^

+10

k

^

)

\implies\sf{W=8-24-10}⟹W=8−24−10

\overbrace{\underbrace{\boxed{\implies\sf{W=-26\;\;Units}}}}

⟹W=−26Units

Therefore,

Magnitude of Work done will be equal to 26 Units .

Answered by thotasiva321
0

Answer:

How to Solve for Both X & Y

Rewrite the linear equations in standard form Ax + By = 0 by combining like terms and adding or subtracting terms from both sides of the equation. ...

Write one of the equations directly underneath one another so the x and y variable.

The Elimination Method

Step 1: Multiply each equation by a suitable number so that the two equations have the same leading coefficient. ...

Step 2: Subtract the second equation from the first.

Step 3: Solve this new equation for y.

Step 4: Substitute y = 2 into either Equation 1 or Equation 2 above and solve for x.

hope it is helpful

make me as brineliest

Attachments:
Similar questions