Math, asked by vipulsharmaji018, 3 months ago

15.Find a quadratic polynomial with sum and product of its zeroes as 1 , 1 respectively is

1 point

(a) x2-2x+1 (b) 3x2-x +1 (c) x2-x+1 (d) x2-x+2​

Answers

Answered by ashwinij200610
1

Answer:

not sure about the answer I am very sorry

Answered by MagicalLove
29

Step-by-step explanation:

 { \underline{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}}

 {\huge{ \underline{  \pmb {\frak{ \blue{answer :  }}}}}}

 {\pmb{ \sf{ \: Let \:  \: the \: polynomial \: be \: }}}

p(x) =ax²+bx+c

 \pmb{ \sf{ \: we \: know \: that \:  \: sum \: and \: product \: of \: zeroes \: be \: 1 \:  \: and \:  \: 1}}

 \pmb{ \tt{sum \: of \: zeroes \:  = 1}} \\  \\ \pmb{ \tt{ \green{ \frac{ - b}{a}  = 1}}} \\  \\ \pmb{ \tt{assuming \:  \: a \:  \:  = 1}} \\  \\ \pmb{ \tt{ \green{ \frac{ - b}{1} = 1}}} \\  \\ \pmb{ \tt{ \green{ b =  - 1}}}

\pmb{ \tt{product \:  \: of \:  \: zeroes \:  \:  = 1}} \\  \\ \pmb{ \tt{ \green{ \frac{c}{a}  = 1}}} \\  \\ \pmb{ \tt{assuming \:  \: a = 1}} \\  \\ \pmb{ \tt{ \green{ \frac{c}{1}  = 1}}} \\  \\ \pmb{ \tt{ \green{ c = 1}}}

  • a=1
  • b=-1
  • c=1

\pmb{ \frak{ \purple{ \ \:  \: the \:  \: required \:  \: quadratic \:  \: equation \:  =  {ax}^{2}  + bx + c = 0}}}

\pmb{ \frak{ \purple{ \implies{(1) {x}^{2}  + ( - 1)x + 1}}}}

\pmb{ \frak{ \purple{ \implies{ {x}^{2}  - x + 1 }}}}

° OPTION (C) IS THE ANSWER

 { \underline{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}}

Similar questions