Math, asked by sarusanjuthyagu, 9 months ago

15. If alpha and Beta be two zeroes of the quadratic
polynomial p(x) = 2x²-3x+7 evaluate

1) 1/ alpha +1/beta

2) alpha ²+ beta²

3)alpha³+beta³

Answers

Answered by xlvlx
2

Answer:

α  and β  are    zeros / roots of   2 x² - 3 x + 7

        So  the sum of the roots = α + β =  - (-3/2) = 1.5 and   

              the product of the roots = α β =  7 / 2  = 3.5

Answered by Anonymous
15

Answer:-

 \bf \: as \:  \:  \alpha  \: and \:  \:  \beta  \:  \: are \: zeroes \: of \: polynomial \:  \:  \\  \\ \\ \tt \: p( x) =  {2x}^{2}  - 3x + 7 \\  \\  \\  \tt \therefore \:  \alpha  +  \beta  =  \frac{ - ( - 3)}{2}  =  \frac{3}{2}  \:  \: and \:  \alpha  \beta  =  \frac{7}{2}

 \tt \: 1) \tt \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \beta  +  \alpha }{ \alpha  \beta }  =  \frac{3}{7}

 \tt \: 2) {( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta

 \tt \implies \:  {( \frac{3}{2} )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2  \times  \frac{7}{2}

 \tt \implies \:  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{9}{4}  - 7 =  \frac{9 - 28}{4}  =  -  \frac{19}{4}

 \tt 3) {( \alpha  +  \beta )}^{3}  =  { \alpha }^{3}  +  { \beta }^{3}  + 3 \alpha  \beta ( \alpha  +  \beta )

 \tt \implies \:  {( \frac{3}{2} )}^{2}  =  { \alpha }^{3}  +  { \beta }^{3}  + 3  \times \frac{7}{2}  \times  \frac{3}{2}

 \tt \implies \:  { \alpha }^{3}  +  { \beta }^{3}  =  \frac{27}{8}  -  \frac{63}{4}  =  \frac{27 - 126}{8}  =  -  \frac{99}{8}

Similar questions