Math, asked by jrameshgpd, 11 months ago

15. In a cubic polynomial, sum of the zeroes is 9 and product of zeroes
is 15. If zeroes are in A.P, then find that cubic polynomial.​

Answers

Answered by rohan3047
3

This can be Formed cubic polynomial by cubic polynomial formula in the the given image

Attachments:
Answered by lublana
3

x^3-9x^2+23x-15

Step-by-step explanation:

Let \alpha,\beta and \gamma are zeroes of cubic polynomial.

According to question

\alpha+\beta+\gamma=9

\alpha+\gamma=9-\beta

\alpha \beta \gamma=15

\alpha,\beta and \gamma are in A.P

Therefore,

\beta-\alpha=\gamma-\beta

\beta+\beta=\gamma+\alpha

2\beta=\gamma+\alpha

Substitute the values

2\beta=9-\beta

2\beta+\beta=9

3\beta=9

\beta=\frac{9}{3}=3

Substitute the values

\alpha+\gamma=9-3=6

3\alpha\gamma=15

\alpha\gamma=\frac{15}{3}=5

\gamma=\frac{5}{\alpha}

Substitute the values

\alpha+\frac{5}{\alpha}=6

\frac{\alpha^2+5}{\alpha}=6

\alpha^2+5=6\alpha

\alpha^2-6\alpha+5=0

\alpha^2-5\alpha-\alpha+5=0

\alpha(\alpha-5)-1(\alpha-5)=0

(\alpha-5)(\alpha-1)=0

\alpha-5=0\implies \alpha=5

\alpha-1=0\implies \alpha=1

Substitute the value of \alpha=5

\gamma=\frac{5}{5}=1

When \alpha=1

\gamma=\frac{5}{1}=5

General  equation of cubic polynomial

x^3-(\alpha+\beta+\gamma)x^2+(\alpha \beta+\beta\gamma+\gamma\alpha)x-\alpha\beta \gamma

Substitute the values\alpha=5,\beta=3,\gamma=1

x^3-9x^2+(5(3)+3(1)+1(5))-15

x^3-9x^2+23x-15=0

Substitute the values\alpha=1,\beta=3,\gamma=5

x^3-9x^2+(1(3)+3(5)+5(1))-15

x^3-9x^2+23x-15

#Learn more:

https://brainly.in/question/15858623:Answered by JHP

Similar questions