15. In a trapezium ABCD, seg AB || seg DC,
seg BDI seg AD, seg ACI seg BC, if AD = 15,
BC = 15 and AB = 25. Find A(O ABCD).
Note :1.By use pytha. theorem
Answers
Answer:
192 sq.units
Step-by-step explanation:
according according to Pythagoras theoremtriangleABD
AB²= AD² +BD²
BD²=AB²-AD²
BD=20
Now,
Area of triangle ABD = √S(S-a) (S-b) (S- c)
S= a+b+c/2S=30
Area of triangle =√S(S-a) (S-b) (S- c)
Area of triangle = 150 sq . units
DP = 300 /25 ......... (1/2*base *height)
DP=12
therefore height of trapezium is 12
Now according to pythagoras theoremIn triangle ADP
AD²=AP²+DP²
AP²=AD²-
AP²=224-144
AP=9
therefore AP= QB=9
CD=PQ=7
area of trapezium =1/2 * some of parallel sides * height =192 sq.units
hence area of trapezium ABCD is 192 sq.units
I hope it helped you
Please Please Please Mark Me As Brainlist Please
Answer:
• In ∆ ADB, Using Pythagoras theorem :
⇒ AB² = AD² + BD²
⇒ (25)² = (15)² + BD²
⇒ (25)² - (15)² = BD²
- a² - b² = (a + b)(a - b)
⇒ (25 + 15)(25 - 15) = BD²
⇒ 40 × 10 = BD²
⇒ 400 = BD²
- Squaring root both sides
⇒ BD = 20
⠀⠀⠀⠀⠀───────────────
As ∆ ADB is a right angle triangle, and it is having two heights i.e. BD and DM.
• Area of right angle ∆ ADB :
⇒ Area with base AD = Area with base AB
⇒ ½ × Base × Height = ½ × Base × Height
⇒ ½ × AD × BD = ½ × AB × DM
- Cancelling ½ from both sides
⇒ AD × BD = AB × DM
⇒ 15 × 20 = 25 × DM
⇒ 300 = 25 × DM
⇒ 300/25 = DM
⇒ DM = 12
• In ∆ AMD, Using Pythagoras theorem :
⇒ AD² = DM² + AM²
⇒ (15)² = (12)² + AM²
⇒ (15)² - (12)² = AM²
⇒ (15 + 12)(15 - 12) = AM²
⇒ 27 × 3 = AM²
⇒ 81 = AM²
- Squaring root both sides
⇒ AM = 9
- MN = AB - (AM + BN) = 25 - (9 + 9) = 25 - 18 = 7 = CD
━━━━━━━━━━━━━━━━━━━━━
- MN = CD = 7
- AB = 25
- DM = 12
• Area of Trapezium ABCD :
⇢ Area = ½ × (Sum of parallel sides) × Height
⇢ Area = ½ × (CD + AB) × DM
⇢ Area = ½ × (7 + 25) × 12
⇢ Area = 32 × 6
⇢ Area = 192 sq units
∴ Hence, Area of trapezium is 192 sq units.