Math, asked by dmn1312, 1 year ago

15 points for 3 question
please solve it as soon as possible with easy steps​

Attachments:

Answers

Answered by deeya30
0

HERE IS UR ANSWER...

Attachments:
Answered by nitkumkumar
0

Answer:

These three questions can be solved by applying trigonometric identities.

Step-by-step explanation:

I am providing step by step explanation of all three questions -

Q30 -   tan²A - tan²B = (cos²B - cos²A)/(cos²A * cos²B)

                                  =  (sin²A - sin²B)/(cos²A * cos²B)

Solution - LHS  = tan²A - tan²B

=  (sin²A/cos²A) - (sin²B/cos²B)

= (sin²A * cos²B - sin²B * cos²A)/(cos²A * cos²B)

= [sin²A * (1 - sin²B) - sin²B * (1 - sin²A)]/(cos²A * cos²B)

= (sin²A - sin²A *sin²B - sin²B + sin²A *sin²B)/(cos²A * cos²B)

= (sin²A - sin²B)/(cos²A * cos²B)

Hence Proved .

Also,LHS= [cos²B * (1 - cos²A) - cos²A * (1 - cos²B)]/(cos²A * cos²B)

= (cos²B - cos²A *cos²B - cos²A + cos²A *cos²B)/(cos²A * cos²B)

= (cos²B -cos²A)/(cos²A * cos²B)

= RHS

Hence proved .

Q31 -  1/(cosecθ + cotθ) - 1/sinθ  =  1/sinθ - 1/(cosecθ - cotθ)

Solution -  LHS  =  1/(cosecθ + cotθ) - 1/sinθ

=  [1/(1/sinθ + cosθ/sinθ)] - 1/sinθ

=  sinθ/(1 + cosθ) - 1/sinθ

= (sin²θ - 1 - cosθ)/[sinθ(1 + cosθ)]

= (1 - cos²θ - 1 - cosθ)/[sinθ(1 + cosθ)]

=  (- cos²θ - cosθ)/[sinθ(1 + cosθ)]

=  [-cosθ(1 + cosθ)]/[sinθ(1 + cosθ)]

=  - cotθ

RHS =  1/sinθ - 1/(cosecθ - cotθ)

=  1/sinθ - [1/(1/sinθ - cosθ/sinθ)]

=  1/sinθ - sinθ/(1 - cosθ)

 = (- sin²θ + 1 - cosθ)/[sinθ(1 - cosθ)]

= (- 1 + cos²θ + 1 - cosθ)/[sinθ(1 - cosθ)]

=  ( cos²θ - cosθ)/[sinθ(1 - cosθ)]

=  [-cosθ(1 - cosθ)]/[sinθ(1 - cosθ)]

=  - cotθ

Thus,  LHS = RHS  .   Hence Proved .

Q32  -  If   secθ - tanθ  = k

Solution -  Firstly , we can write reciprocal of above equation

=>  1/(secθ - tanθ)  =  1/k

Than rationalise the equation

=>  (secθ + tanθ)/[(secθ + tanθ)*(secθ - tanθ)]  =  1/k

=>  (secθ + tanθ)/(sec²θ - tan²θ)  =  1/k

=>  (secθ + tanθ)  =  1/k                         ....................(1)

Also,  (secθ - tanθ)  = k                           ....................(2)

Adding equations (1) and (2)

=>  2secθ =  k + 1/k

=> 2secθ = (k² + 1)/k

=>  secθ = (k² + 1)/2k

=>   cosθ = 2k/(k² + 1)    .  Hence Proved

As,  cosθ = 2k/(k² + 1)  =  Base/Hypotenuse

=>  Perpendicular,P = √H²-B²

                                 = √(k² + 1)² - (2k)²

                                  = √(k² - 1)²

                                   =  k² - 1

So,  sinθ =  Perpendicular/Hypotenuse

              =  (k² - 1)/(k² + 1)

=>  sinθ =  (k² - 1)/(k² + 1)   .  Hence Proved

                       

Similar questions