Math, asked by himanshi1236, 2 months ago

15 Show that tan 15° + tan 75°
sec^2 15°/✓sec^2 15° -1​

Answers

Answered by av60464
1

Answer:

that's 1-1=,0

plz mark this as brainlest

Answered by ravi2303kumar
1

Step-by-step explanation:

To prove : tan15°+ tan75° = \frac{sec^215}{\sqrt{sec^215-1} }

LHS = tan15°+ tan75°

       = \frac{sin15}{cos15} + \frac{sin75}{cos75}

       = \frac{sin15.cos75+sin75.cos15}{cos15.cos75}

       = \frac{sin(15+75)}{cos15.cos75}

       = \frac{sin90}{cos15.cos75} = \frac{1}{cos15.cos75}

       = \frac{1}{cos15}*.\frac{1}{cos75}

       = sec15°.sec75°    -------------------- (1)

RHS = \frac{sec^215}{\sqrt{sec^215-1} }

        = \frac{sec^215}{\sqrt{tan^215} }  = \frac{sec^215}{tan15}

        = \frac{ [\frac{1}{cos^215}] }   {[ \frac{sin15}{cos15} ]}

        = \frac{1}{cos^215} * \frac{cos15}{sin15}

        = \frac{1}{sin15.cos15} = \frac{1}{sin(90-75).cos15}

        = \frac{1}{cos15.cos75}

       = \frac{1}{cos15}*.\frac{1}{cos75}

       = sec15°.sec75°    -------------------- (2)

so, we see that (1) = (2)

=> LHS = RHS

Hence proved

Similar questions