Math, asked by ashwinikumar88, 1 year ago

15. Solve the following system of equations in x and y:
ax + by = C,
bx + ay = 1+c.​

Attachments:

Answers

Answered by Anonymous
8

Answer:

given \: equatios \: are \:    \\ ax + by = c  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -   --  -  - (1) \\ bx + ay = 1 + c \:  \:  \:   \:  \:  \:  \: -  -  -  - (2)

eq(1) \times b =  > abx +  {b}^{2} y = bc \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - (3) \\ eq(2) \times a =  > abx +  {a}^{2} y = a(1 + c) \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  - (4)

eq(3) - eq(4) =  >  \\ ( {b}^{2}  -  {a}^{2} )y = bc - a - ac \\ y =  \frac{bc - a - ac}{ {b}^{2} -  {a}^{2}  }

by \: eq(1) =  >  \\ ax + b( \frac{bc - a - ac}{ {b}^{2}  -  {a}^{2} } ) = c \\ ax = c - b( \frac{bc - a - ac}{ {b}^{2}  -  {a}^{2} } ) \:  \\ x =  \frac{1}{a}( c - b( \frac{bc - a - ac}{ {b}^{2}  -  {a}^{2} } )  \: )

HOPE THIS ANSWER WILL HELP YOU.......

Mark as brainliest......

# jasleenlehri13......☺

Similar questions