Math, asked by Kazi11, 11 months ago


15. The height of an equilateral triangle is √6 cm. Its area is
(a) 3√3 cm2 (b) 2√3 cm2 (c) 2√2 cm2 (d) 6√2 cm2​

Answers

Answered by Anonymous
6

\Large\underline{\underline{\sf Given:}}

  • Height of equilateral triangle =\sf{\sqrt{6}}

\Large\underline{\underline{\sf To\:Find:}}

  • Area of equilateral triangle.

\Large\underline{\underline{\sf Formula\:Used:}}

{\boxed{\boxed{\sf \pink{Area\:of\: equilateral\: triangle=\dfrac{\sqrt{3}}{4}a^2}}}}

\Large\underline{\underline{\sf Solution:}}

Applying Pythagoras Theorem

hypotenuse (h) = a cm

perpendicular (p) = √6 cm

base (b) = a/2

h² = p² + b²

\implies{\sf a^2=(\sqrt{(6)}^2+(\left(\dfrac{a}{2}\right)^2 }

\implies{\sf a^2=6+\dfrac{a^2}{4} }

\implies{\sf a^2-\dfrac{a^2}{4}=6}

\implies{\sf \dfrac{4a^2-a^2}{4}=6 }

\implies{\sf \dfrac{3a^2}{4}=6}

\implies{\sf a^2=\dfrac{6×4}{3} }

\implies{\sf a^2=8cm^2}

Area of equilateral triangle

\Large{\sf A=\dfrac{\sqrt{3}}{4}a^2}

\implies{\sf A=\dfrac{\sqrt{3}}{4}×8cm^2}

\implies{\sf A=2\sqrt{3}cm^2 }

\Large\underline{\underline{\sf Answer:}}

Option (b) \bf{2\sqrt{3}cm^2}

•°• Area of equilateral triangle is \sf{2\sqrt{3}cm^2}.

Answered by naiduasn2009
9

\huge\mathcal\pink{♡Añswer♡}

Given:

Height of equilateral triangle =\sf{\sqrt{6}}

\Large\underline{\underline{\sf To\:Find:}}

Area of equilateral triangle.

\Large\underline{\underline{\sf Formula\:Used:}}

{\boxed{\boxed{\sf \pink{Area\:of\: equilateral\: triangle=\dfrac{\sqrt{3}}{4}a^2}}}}

\Large\underline{\underline{\sf Solution:}}

☄ Applying Pythagoras Theorem

hypotenuse (h) = a cm

perpendicular (p) = √6 cm

base (b) = a/2

h² = p² + b²

\implies{\sf a^2=(\sqrt{(6)}^2+(\left(\dfrac{a}{2}\right)^2 }

\implies{\sf a^2=6+\dfrac{a^2}{4} }

\implies{\sf a^2-\dfrac{a^2}{4}=6}

\implies{\sf \dfrac{4a^2-a^2}{4}=6 }

\implies{\sf \dfrac{3a^2}{4}=6}

\implies{\sf a^2=\dfrac{6×4}{3}}

\implies{\sf a^2=8cm^2}

☄Area of equilateral triangle

\Large{\sf A=\dfrac{\sqrt{3}}{4}a^2}

\implies{\sf A=\dfrac{\sqrt{3}}{4}×8cm^2}

\implies{\sf A=2\sqrt{3}cm^2 }

\Large\underline{\underline{\sf Answer:}}

Option (b) \bf{2\sqrt{3}cm^2}

Area of equilateral triangle is\sf{2\sqrt{3}cm^2}

\huge\blue{\underline{\underline{Follow Me}}}

Similar questions